

USER GUIDE

SMC2552W-G2

EliteConnect™ Universal 802.11g 2.4GHz Wireless Access Point

EliteConnect™ SMC2552W-G2 2.4GHz Wireless Access Point

The easy way to make all your network connections

Phone: (949) 679-8000

September 2008 Pub.# 149100034100E F4.3.2.2 E092008-AP-R03 Information furnished by SMC Networks, Inc. (SMC) is believed to be accurate and reliable. However, no responsibility is assumed by SMC for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SMC. SMC reserves the right to change specifications at any time without notice.

Copyright © 2008 by

SMC Networks, Inc.

20 Mason

Irvine, CA 92618

All rights reserved. Printed in Taiwan

Trademarks:

SMC is a registered trademark; and EZ Switch, TigerStack and TigerSwitch are trademarks of SMC Networks, Inc. Other product and company names are trademarks or registered trademarks of their respective holders.

Limited Warranty

Limited Warranty Statement: SMC Networks, Inc. ("SMC") warrants its products to be free from defects in workmanship and materials, under normal use and service, for the applicable warranty term. All SMC products carry a standard 90-day limited warranty from the date of purchase from SMC or its Authorized Reseller. SMC may, at its own discretion, repair or replace any product not operating as warranted with a similar or functionally equivalent product, during the applicable warranty term. SMC will endeavor to repair or replace any product returned under warranty within 30 days of receipt of the product.

The standard limited warranty can be upgraded to a Limited Lifetime* warranty by registering new products within 30 days of purchase from SMC or its Authorized Reseller. Registration can be accomplished via the enclosed product registration card or online via the SMC Web site. Failure to register will not affect the standard limited warranty. The Limited Lifetime warranty covers a product during the Life of that Product, which is defined as the period of time during which the product is an "Active" SMC product. A product is considered to be "Active" while it is listed on the current SMC price list. As new technologies emerge, older technologies become obsolete and SMC will, at its discretion, replace an older product in its product line with one that incorporates these newer technologies. At that point, the obsolete product is discontinued and is no longer an "Active" SMC product. A list of discontinued products with their respective dates of discontinuance can be found at:

http://www.smc.com/index.cfm?action=customer_service_warranty.

All products that are replaced become the property of SMC. Replacement products may be either new or reconditioned. Any replaced or repaired product carries either a 30-day limited warranty or the remainder of the initial warranty, whichever is longer. SMC is not responsible for any custom software or firmware, configuration information, or memory data of Customer contained in, stored on, or integrated with any products returned to SMC pursuant to any warranty. Products returned to SMC should have any customer-installed accessory or add-on components, such as expansion modules, removed prior to returning the product for replacement. SMC is not responsible for these items if they are returned with the product.

Customers must contact SMC for a Return Material Authorization number prior to returning any product to SMC. Proof of purchase may be required. Any product returned to SMC without a valid Return Material Authorization (RMA) number clearly marked on the outside of the package will be returned to customer at customer's expense. For warranty claims within North America, please call our toll-free customer support number at (800) 762-4968. Customers are responsible for all shipping charges from their facility to SMC. SMC is responsible for return shipping charges from SMC to customer.

WARRANTIES EXCLUSIVE: IF AN SMC PRODUCT DOES NOT OPERATE AS WARRANTED ABOVE, CUSTOMER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT OF THE PRODUCT IN QUESTION, AT SMC'S OPTION. THE FOREGOING WARRANTIES AND REMEDIES ARE EXCLUSIVE AND ARE IN LIEU OF ALL OTHER WARRANTIES OR CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. SMC NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR IT ANY OTHER LIABILITY IN CONNECTION WITH THE SALE, INSTALLATION, MAINTENANCE OR USE OF ITS PRODUCTS. SMC SHALL

NOT BE LIABLE UNDER THIS WARRANTY IF ITS TESTING AND EXAMINATION DISCLOSE THE ALLEGED DEFECT IN THE PRODUCT DOES NOT EXIST OR WAS CAUSED BY CUSTOMER'S OR ANY THIRD PERSON'S MISUSE, NEGLECT, IMPROPER INSTALLATION OR TESTING, UNAUTHORIZED ATTEMPTS TO REPAIR, OR ANY OTHER CAUSE BEYOND THE RANGE OF THE INTENDED USE, OR BY ACCIDENT, FIRE, LIGHTNING, OR OTHER HAZARD.

LIMITATION OF LIABILITY: IN NO EVENT, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), SHALL SMC BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE, LOSS OF BUSINESS, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THE SALE, INSTALLATION, MAINTENANCE, USE, PERFORMANCE, FAILURE, OR INTERRUPTION OF ITS PRODUCTS, EVEN IF SMC OR ITS AUTHORIZED RESELLER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR THE LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, WHICH MAY VARY FROM STATE TO STATE. NOTHING IN THIS WARRANTY SHALL BE TAKEN TO AFFECT YOUR STATUTORY RIGHTS.

* SMC will provide warranty service for one year following discontinuance from the active SMC price list. Under the limited lifetime warranty, internal and external power supplies, fans, and cables are covered by a standard one-year warranty from date of purchase.

SMC Networks, Inc. 20 Mason Irvine, CA 92618

COMPLIANCES

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- · Reorient or relocate the receiving antenna
- · Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

IMPORTANT NOTE:

FCC Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters (8 inches) between the radiator and your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Industry Canada - Class B

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the interference-causing equipment standard entitled "Digital Apparatus," ICES-003 of Industry Canada.

Cet appareil numérique respecte les limites de bruits radioélectriques applicables aux appareils numériques de Classe B prescrites dans la norme sur le matérial brouilleur: "Appareils Numériques," NMB-003 édictée par l'Industrie.

Taiwan DGT

交通部電信總局

低功率電波輻射性電標管理辦法 (930322)

- 第十二條 經型式配整合格之低功率射頻電格,非經計可,公司、商號或使用者均不得擅自變更頻率、 加大功率或變更原設計之特性及功能。
- 第十四條 低功率射頻電艦之使用不得影響飛航安全及干擾合法通信;經發現有干擾現象時,應立即 停用,並改善至無干擾時方得繼續使用。

前項合法通信,指依電信法規定作業之無線電通信。

低功率射頻電機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。

Japan VCCI Class B

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づくクラスB情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると受信障害を引き起こすことがあります。

取り扱い説明書に従って正しい取り扱いをして下さい。

Australia/New Zealand AS/NZS 4771

EC Conformance Declaration (€ (!)

Marking by the above symbol indicates compliance with the Essential Requirements of the R&TTE Directive of the European Union (1999/5/EC). This equipment meets the following conformance standards:

- EN 60950-1 (IEC 60950-1) Product Safety
- EN 300 328 Technical requirements for 2.4 GHz radio equipment
- EN 301 489-1 / EN 301 489-17 EMC requirements for radio equipment

Countries of Operation & Conditions of Use in the European Community

This device is intended to be operated in all countries of the European Community. Requirements for indoor vs. outdoor operation, license requirements and allowed channels of operation apply in some countries as described below:

Note: The user must use the configuration utility provided with this product to ensure the channels of operation are in conformance with the spectrum usage rules for European Community countries as described below.

- This device requires that the user or installer properly enter the current country of operation in the command line interface as described in the user guide, before operating this device.
- This device will automatically limit the allowable channels determined by the current country of operation. Incorrectly entering the country of operation may result in illegal operation and may cause harmful interference to other systems. The user is obligated to ensure the device is operating according to the channel limitations, indoor/outdoor restrictions and license requirements for each European Community country as described in this document.
- This device may be operated indoors or outdoors in all countries of the European Community using the 2.4 GHz band: Channels 1 - 13, except where noted below.
 - In Italy the end-user must apply for a license from the national spectrum authority to operate this device outdoors.
 - In Belgium outdoor operation is only permitted using the 2.46 -2.4835 GHz band: Channel 13.
 - In France outdoor operation is only permitted using the 2.4 2.454
 GHz band: Channels 1 7.

Declaration of Conformity in Languages of the European Community

English	Hereby, SMC, declares that this Radio LAN device is in compliance with the essential requirements and other relevant provisions of Directive 1999/5/EC.
Finnish	Valmistaja SMC vakuuttaa täten että Radio LAN device tyyppinen laite on direktiivin 1999/5/EY oleellisten vaatimusten ja sitä koskevien direktiivin muiden ehtojen mukainen.
Dutch	Hierbij verklaart SMC dat het toestel Radio LAN device in overeenstemming is met de essentiële eisen en de andere relevante bepalingen van richtlijn 1999/5/EG
	Bij deze SMC dat deze Radio LAN device voldoet aan de essentiële eisen en aan de overige relevante bepalingen van Richtlijn 1999/5/EC.
French	Par la présente SMC déclare que l'appareil Radio LAN device est conforme aux exigences essentielles et aux autres dispositions pertinentes de la directive 1999/5/CE
Swedish	Härmed intygar SMC att denna Radio LAN device står I överensstämmelse med de väsentliga egenskapskrav och övriga relevanta bestämmelser som framgår av direktiv 1999/5/EG.
Danish	Undertegnede SMC erklærer herved, at følgende udstyr Radio LAN device overholder de væsentlige krav og øvrige relevante krav i direktiv 1999/5/EF
German	Hiermit erklärt SMC, dass sich dieser/diese/dieses Radio LAN device in Übereinstimmung mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften der Richtlinie 1999/5/EG befindet". (BMWi)
	Hiermit erklärt SMC die Übereinstimmung des Gerätes Radio LAN device mit den grundlegenden Anforderungen und den anderen relevanten Festlegungen der Richtlinie 1999/5/EG. (Wien)
Greek	METHNΠΑΡΟΥΣΑ SMC ΔΗ/ΩΝΕΙ ΟΠ radio LAN device ΣΥΜΛΟΡΦΩΝΕΤΑΙ ΠΡΟΣ ΤΙΣ ΟΥΣΙΩΔΕΙΣ ΑΠΑΙΤΗΣΕΙΣ ΚΑΙ ΤΙΣ ΛΟΙΠΕΣ ΣΧΕΤΙΚΈΣ ΔΙΑΤΑΞΕΙΣ ΤΗΣ ΟΔΗΓΙΑΣ 1999/5/ΕΚ
Italian	Con la presente SMC dichiara che questo Radio LAN device è conforme ai requisiti essenziali ed alle altre disposizioni pertinenti stabilite dalla direttiva 1999/5/CE.

Spanish	Por medio de la presente Manufacturer declara que el Radio LAN device cumple con los requisitos esenciales y cualesquiera otras disposiciones aplicables o exigibles de la Directiva 1999/5/CE
Portuguese	Manufacturer declara que este Radio LAN device está conforme com os requisitos essenciais e outras disposições da Directiva 1999/5/CE.

Safety Compliance

Power Cord Safety

Please read the following safety information carefully before installing the access point:

WARNING: Installation and removal of the unit must be carried out by qualified personnel only.

- The unit must be connected to an earthed (grounded) outlet to comply with international safety standards.
- Do not connect the unit to an A.C. outlet (power supply) without an earth (ground) connection.
- The appliance coupler (the connector to the unit and not the wall plug) must have a configuration for mating with an EN 60320/IEC 320 appliance inlet.
- The socket outlet must be near to the unit and easily accessible. You can only remove power from the unit by disconnecting the power cord from the outlet.
- This unit operates under SELV (Safety Extra Low Voltage) conditions according to IEC 60950. The conditions are only maintained if the equipment to which it is connected also operates under SELV conditions.
- The PoE (Power over Ethernet), which is to be interconnected with other equipment that must be contained within the same building including the interconnected equipment's associated LAN connections.

France and Peru only

This unit cannot be powered from ${\rm IT}^{\dagger}$ supplies. If your supplies are of IT type, this unit must be powered by 230 V (2P+T) via an isolation transformer ratio 1:1, with the secondary connection point labelled Neutral, connected directly to earth (ground).

[†] Impédance à la terre

COMPLIANCES

Important! Before making connections, make sure you have the correct cord set. Check it (read the label on the cable) against the following:

Power Cord Set	
U.S.A. and Canada	The cord set must be UL-approved and CSA certified.
Canada	The minimum specifications for the flexible cord are: - No. 18 AWG - not longer than 2 meters, or 16 AWG Type SV or SJ - 3-conductor
	The cord set must have a rated current capacity of at least 10 A
	The attachment plug must be an earth-grounding type with NEMA 5-15P (15 A, 125 V) or NEMA 6-15P (15 A, 250 V) configuration.
Denmark	The supply plug must comply with Section 107-2-D1, Standard DK2-1a or DK2-5a.
Switzerland	The supply plug must comply with SEV/ASE 1011.
U.K.	The supply plug must comply with BS1363 (3-pin 13 A) and be fitted with a 5 A fuse which complies with BS1362.
	The mains cord must be <har> or <basec> marked and be of type HO3VVF3GO.75 (minimum).</basec></har>
Europe	The supply plug must comply with CEE7/7 ("SCHUKO").
	The mains cord must be <har> or <basec> marked and be of type HO3VVF3GO.75 (minimum).</basec></har>
	IEC-320 receptacle.

Veuillez lire à fond l'information de la sécurité suivante avant d'installer le access point:

AVERTISSEMENT: L'installation et la dépose de ce groupe doivent être confiés à un personnel qualifié.

- Ne branchez pas votre appareil sur une prise secteur (alimentation électrique) lorsqu'il n'y a pas de connexion de mise à la terre (mise à la masse).
- Vous devez raccorder ce groupe à une sortie mise à la terre (mise à la masse) afin de respecter les normes internationales de sécurité.
- Le coupleur d'appareil (le connecteur du groupe et non pas la prise murale) doit respecter une configuration qui permet un branchement sur une entrée d'appareil EN 60320/IEC 320.
- La prise secteur doit se trouver à proximité de l'appareil et son accès doit être facile. Vous ne pouvez mettre l'appareil hors circuit qu'en débranchant son cordon électrique au niveau de cette prise.
- L'appareil fonctionne à une tension extrêmement basse de sécurité qui est conforme à la norme IEC 60950. Ces conditions ne sont maintenues que si l'équipement auquel il est raccordé fonctionne dans les mêmes conditions.

France et Pérou uniquement:

Ce groupe ne peut pas être alimenté par un dispositif à impédance à la terre. Si vos alimentations sont du type impédance à la terre, ce groupe doit être alimenté par une tension de 230 V (2 P+T) par le biais d'un transformateur d'isolement à rapport 1:1, avec un point secondaire de connexion portant l'appellation Neutre et avec raccordement direct à la terre (masse).

Cordon électrique - Il doit être agréé dans le pays d'utilisation	
Etats-Unis et Canada:	Le cordon doit avoir reçu l'homologation des UL et un certificat de la CSA.
	Les spécifications minimales pour un cable flexible sont AWG No. 18, ou AWG No. 16 pour un cable de longueur inférieure à 2 mètres. - type SV ou SJ - 3 conducteurs
	Le cordon doit être en mesure d'acheminer un courant nominal d'au moins 10 A.
	La prise femelle de branchement doit être du type à mise à la terre (mise à la masse) et respecter la configuration NEMA 5-15P (15 A, 125 V) ou NEMA 6-15P (15 A, 250 V).
Danemark:	La prise mâle d'alimentation doit respecter la section 107-2 D1 de la norme DK2 1a ou DK2 5a.

COMPLIANCES

Cordon électrique - Il doit être agréé dans le pays d'utilisation	
Suisse:	La prise mâle d'alimentation doit respecter la norme SEV/ ASE 1011.
Europe	La prise secteur doit être conforme aux normes CEE 7/7 ("SCHUKO")
	LE cordon secteur doit porter la mention <har> ou <basec> et doit être de type HO3VVF3GO.75 (minimum).</basec></har>

Bitte unbedingt vor dem Einbauen des Access Point die folgenden Sicherheitsanweisungen durchlesen (Germany):

WARNUNG: Die Installation und der Ausbau des Geräts darf nur durch Fachpersonal erfolgen.

- Das Gerät sollte nicht an eine ungeerdete Wechselstromsteckdose angeschlossen werden.
- Das Gerät muß an eine geerdete Steckdose angeschlossen werden, welche die internationalen Sicherheitsnormen erfüllt.
- Der Gerätestecker (der Anschluß an das Gerät, nicht der Wandsteckdosenstecker) muß einen gemäß EN 60320/IEC 320 konfigurierten Geräteeingang haben.
- Die Netzsteckdose muß in der Nähe des Geräts und leicht zugänglich sein. Die Stromversorgung des Geräts kann nur durch Herausziehen des Gerätenetzkabels aus der Netzsteckdose unterbrochen werden.
- Der Betrieb dieses Geräts erfolgt unter den SELV-Bedingungen (Sicherheitskleinstspannung) gemäß IEC 60950. Diese Bedingungen sind nur gegeben, wenn auch die an das Gerät angeschlossenen Geräte unter SELV-Bedingungen betrieben werden.

Stromkabel. Dies muss von dem Land, in dem es benutzt wird geprüft werden:	
U.S.A und Kanada	Der Cord muß das UL gepruft und war das CSA beglaubigt.
	Das Minimum spezifikation fur der Cord sind:
	- Nu. 18 AWG - nicht mehr als 2 meter, oder 16 AWG. - Der typ SV oder SJ - 3-Leiter
	Der Cord muß haben eine strombelastbarkeit aus wenigstens 10 A
	Dieser Stromstecker muß hat einer erdschluss mit der typ NEMA 5-15P (15A, 125V) oder NEMA 6-15P (15A, 250V) konfiguration.
Danemark	Dieser Stromstecker muß die ebene 107-2-D1, der standard DK2-1a oder DK2-5a Bestimmungen einhalten.
Schweiz	Dieser Stromstecker muß die SEV/ASE 1011Bestimmungen einhalten.
Europe	Das Netzkabel muß vom Typ HO3VVF3GO.75 (Mindestanforderung) sein und die Aufschrift <har> oder <basec> tragen.</basec></har>
	Der Netzstecker muß die Norm CEE 7/7 erfüllen ("SCHUKO").

COMPLIANCES

Table of Contents

Chapter 1: Introduction	1-1
Package Checklist	1-2
Hardware Description	1-2
Antennas	1-3
LED Indicators	1-3
Security Slot	1-4
Console Port	1-4
Ethernet Port	1-4
Reset Button	1-5
Power Connector	1-5
Features and Benefits	1-5
System Defaults	1-6
Chapter 2: Hardware Installation	2-1
Chapter 3: Network Configuration	3-1
Network Topologies	3-2
Ad Hoc Wireless LAN (no Access Point)	3-2
Infrastructure Wireless LAN	3-3
Infrastructure Wireless LAN for Roaming Wireless PCs	3-4
Infrastructure Wireless Bridge	3-5
Infrastructure Wireless Repeater	3-6
Chapter 4: Initial Configuration	4-1
Initial Setup through the CLI	4-1
Required Connections	4-1
Initial Configuration Steps	4-2
Logging In	4-3
Chapter 5: System Configuration	5-1
Advanced Configuration	5-2
System Identification	5-2 5-3
TCP / IP Settings	5-5 5-5
RADIUS	5-7
SSH Settings	5-11

Authentication	5-12
Filter Control	5-17
VLAN	5-19
WDS Settings	5-21
AP Management	5-27
Administration	5-28
System Log	5-33
SNMP	5-37
Configuring SNMP and Trap Message Parameters	5-38
Configuring SNMPv3 Users	5-43
Configuring SNMPv3 Trap Filters	5-45
Configuring SNMPv3 Targets	5-47
Radio Interface	5-49
Security	5-66
Status Information	5-85
Access Point Status	5-85
Station Status	5-88
Event Logs	5-91
Chapter 6: Command Line Interface	6-1
Using the Command Line Interface	6-1
Accessing the CLI	6-1
Console Connection	6-1
Telnet Connection	6-1
Entering Commands	6-2
Keywords and Arguments	6-2
Minimum Abbreviation	6-3
Command Completion	6-3
Getting Help on Commands	6-3
Partial Keyword Lookup	6-4
Negating the Effect of Commands	6-4
Using Command History	6-4
Understanding Command Modes	6-4
Exec Commands	6-5
Configuration Commands	6-5
Command Line Processing	6-6
Command Groups	6-6
General Commands	6-7
configure	6-8
end	6-8
exit	6-8
ping	6-9
reset	6-10
show history	6-10

show line	6-11
System Management Commands	6-11
country	6-12
prompt	6-14
system name	6-14
username	6-15
password	6-15
ip ssh-server enable	6-16
ip ssh-server port	6-16
ip telnet-server enable	6-17
ip http port	6-17
ip http server	6-18
ip https port	6-18
ip https server	6-19
APmgmtIP	6-20
APmgmtUI	6-21
show apmagement	6-21
show system	6-22
show version	6-23
show config	6-23
show hardware	6-27
System Logging Commands	6-27
logging on	6-28
logging host	6-28
logging console	6-29
logging level	6-29
logging facility-type	6-30
logging clear	6-31
show logging	6-31
show event-log	6-32
System Clock Commands	6-32
sntp-server ip	6-33
sntp-server enable	6-33
sntp-server date-time	6-34
sntp-server daylight-saving	6-35
sntp-server timezone	6-35
show sntp	6-36
DHCP Relay Commands	6-37
dhcp-relay enable	6-37
dhcp-relay	6-38
show dhcp-relay	6-38
SNMP Commands	6-39
snmp-server community	6-40
snmp-server contact	6-40
snmp-server location	6-41

snmp-server enable server	6-41
snmp-server host	6-42
snmp-server trap	6-43
snmp-server engine-id	6-45
snmp-server user	6-45
snmp-server targets	6-47
snmp-server filter	6-48
snmp-server filter-assignments	6-49
show snmp groups	6-49
show snmp users	6-50
show snmp group-assignments	6-50
show snmp target	6-51
show snmp filter	6-51
show snmp filter-assignments	6-52
show snmp	6-53
Flash/File Commands	6-54
bootfile	6-54
copy	6-55
delete	6-56
dir	6-57
show bootfile	6-57
RADIUS Client	6-58
radius-server address	6-58
radius-server port	6-59
radius-server key	6-59
radius-server retransmit	6-60
radius-server timeout	6-60
radius-server port-accounting	6-61
radius-server timeout-interim	6-61
radius-server radius-mac-format	6-62
radius-server vlan-format	6-62
show radius	6-63
802.1X Authentication	6-64
802.1x	6-64
802.1x broadcast-key-refresh-rate	6-65
802.1x session-key-refresh-rate	6-66
802.1x session-timeout	6-66
802.1x-supplicant enable	6-67
802.1x-supplicant user	6-67
show authentication	6-68
MAC Address Authentication	6-69
address filter default	6-69
address filter entry	6-70
address filter delete	6-70
mac-authentication server	6-71

mac-authentication session-timeout	6-71
Filtering Commands	6-72
filter local-bridge	6-72
filter ap-manage	6-73
filter uplink enable	6-73
filter uplink	6-74
filter ethernet-type enable	6-74
filter ethernet-type protocol	6-75
show filters	6-76
WDS Bridge Commands	6-76
bridge role (WDS)	6-77
bridge-link parent	6-77
bridge-link child	6-78
bridge dynamic-entry age-time	6-79
show bridge aging-time	6-79
show bridge filter-entry	6-80
show bridge link	6-80
Spanning Tree Commands	6-82
bridge stp enable	6-82
bridge stp forwarding-delay	6-83
bridge stp hello-time	6-83
bridge stp max-age	6-84
bridge stp priority	6-84
bridge-link path-cost	6-85
bridge-link port-priority	6-85
show bridge stp	6-86
Ethernet Interface Commands	6-87
interface ethernet	6-87
dns server	6-88
ip address	6-88
ip dhcp	6-89
speed-duplex	6-90
shutdown	6-91
show interface ethernet	6-91
Wireless Interface Commands	6-92
interface wireless	6-94
vap	6-94
speed	6-95
multicast-data-rate	6-95
channel	6-96
transmit-power	6-96
radio-mode	6-97
preamble	6-98
antenna control	6-98
antenna id	6-99

antenna location	6-100
beacon-interval	6-100
dtim-period	6-101
fragmentation-length	6-101
rts-threshold	6-102
super-g	6-103
description	6-103
ssid	6-104
closed-system	6-104
max-association	6-105
assoc-timeout-interval	6-105
auth-timeout-value	6-105
shutdown	6-106
show interface wireless	6-107
show station	6-108
Rogue AP Detection Commands	6-108
rogue-ap enable	6-109
rogue-ap authenticate	6-110
rogue-ap duration	6-110
rogue-ap interval	6-111
rogue-ap scan	6-112
show rogue-ap	6-112
Wireless Security Commands	6-113
auth	6-113
encryption	6-115
key	6-116
transmit-key	6-117
cipher-suite	6-118
mic_mode	6-119
wpa-pre-shared-key	6-120
pmksa-lifetime	6-120
pre-authentication	6-121
Link Integrity Commands	6-122
link-integrity ping-detect	6-123
link-integrity ping-host	6-123
link-integrity ping-interval	6-124
link-integrity ping-fail-retry	6-124
link-integrity ethernet-detect	6-124
show link-integrity	6-125
IAPP Commands	6-126
iapp	6-126
VLAN Commands	6-127
vlan	6-127
management-vlanid	6-128
vlan-id	6-128

	Contents
WMM Commands wmm	6-129 6-130
wmm-acknowledge-policy wmmparam	6-130 6-131
Appendix A: Troubleshooting	A-1
Appendix B: Cables and Pinouts	B-1
Twisted-Pair Cable Assignments	B-1
10/100BASE-TX Pin Assignments	B-1
Straight-Through Wiring	B-2
Crossover Wiring	B-3
Console Port Pin Assignments	B-3
Wiring Map for Serial Cable	B-4
Appendix C: Specifications	C-1
General Specifications	C-1
Sensitivity	C-3
Transmit Power	C-3
Operating Range	C-5

Glossary

Index

Chapter 1: Introduction

The 2.4 GHz Wireless Access Point is an IEEE 802.11b/g access point that provides transparent, wireless high-speed data communications between the wired LAN and fixed or mobile devices equipped with an 802.11b, or 802.11g wireless adapter.

This solution offers fast, reliable wireless connectivity with considerable cost savings over wired LANs (which include long-term maintenance overhead for cabling). Using 802.11b and 802.11g technology, this access point can easily replace a 10 Mbps Ethernet connection or seamlessly integrate into a 10/100 Mbps Ethernet LAN.

The access point supports up to eight Virtual Access Points. This allows traffic to be separated for different user groups using an access point that services one area. For each VAP, different security settings, VLAN assignments, and other parameters can be applied.

Each radio interface on the access point can operate in one of four modes:

- Access Point Providing conectivity to wireless clients in the service area.
- Repeater Providing an extended link to a remote access point from the wired LAN. In this mode, the access point does not have a cable connection to the wired Ethernet LAN.
- Bridge Providing links to access points operating in "Bridge" or "Root Bridge" mode and thereby connecting other wired LAN segments.
- Root Bridge Providing links to other access points operating in "Bridge" mode and thereby connecting other wired LAN segments. Only one unit in the wireless bridge network can be set to "Root Bridge" mode.

In addition, the access point offers full network management capabilities through an easy to configure web interface, a command line interface for initial configuration and troubleshooting, and support for Simple Network Management Protocol tools.

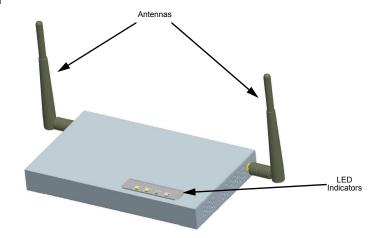
Radio Characteristics – The IEEE 802.11b/g standard uses a radio modulation technique known as Orthogonal Frequency Division Multiplexing (OFDM), and a shared collision domain (CSMA/CA). It operates at the 2.4 GHz Unlicensed National Information Infrastructure (UNII) band for connections to 802.11g clients.

IEEE 802.11g includes backward compatibility with the IEEE 802.11b standard. IEEE 802.11b also operates at 2.4 GHz, but uses Direct Sequence Spread Spectrum (DSSS) and Complementary Code Keying (CCK) modulation technology to achieve a communication rate of up to 11 Mbps.

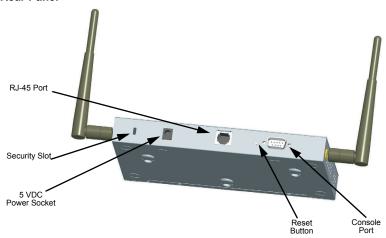
The access point supports a 54 Mbps half-duplex connection to Ethernet networks for each active channel.

Introduction

Package Checklist


The 2.4 GHz Wireless Access Point package includes:

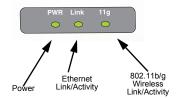
- · One 2.4 GHz Wireless Access Point
- · One Category 5 network cable
- · One RS-232 console cable
- · One AC power adapter and power cord
- · Four rubber feet
- User Guide CD


Inform your dealer if there are any incorrect, missing or damaged parts. If possible, retain the carton, including the original packing materials. Use them again to repack the product in case there is a need to return it.

Hardware Description

Top Panel

Rear Panel


Antennas

The access point includes integrated diversity antennas for wireless communications. A diversity antenna system uses two identical antennas to receive and transmit signals, helping to avoid multipath fading effects. When receiving, the access point checks both antennas and selects the one with the strongest signal. When transmitting, it will continue to use the antenna previously selected for receiving. The access point never transmits from both antennas at the same time.

The antennas transmit the outgoing signal as a toroidal sphere (doughnut shaped), with the coverage extending most in a direction perpendicular to the antenna. The antenna should be adjusted to an angle that provides the appropriate coverage for the service area. For further information, see "Positioning the Antennas" on 2-2.

LED Indicators

The access point includes three status LED indicators, as described in the following figure and table.

1 Introduction

LED	Status	Description
PWR	On	Indicates that the system is working normally.
	Flashing	Indicates running a self-test or loading the software program.
	Flashing (Prolonged)	Indicates system errors.
Link	On	Indicates a valid 10/100 Mbps Ethernet cable link.
	Flashing	Indicates that the access point is transmitting or receiving data on a 10/100 Mbps Ethernet LAN. Flashing rate is proportional to network activity.
11g	On	Indicates that the 802.11b/g radio is enabled.
	Flashing	Indicates that the access point is transmitting or receiving data through wireless links. Flashing rate is proportional to network activity.
	Off	Indicates that the 802.11b/g radio is disabled.

Security Slot

The access point includes a Kensington security slot on the rear panel. You can prevent unauthorized removal of the access point by wrapping the Kensington security cable (not provided) around an unmovable object, inserting the lock into the slot, and turning the key.

Console Port

This port is used to connect a console device to the access point through a serial cable. This connection is described under "Console Port Pin Assignments" on page B-3. The console device can be a PC or workstation running a VT-100 terminal emulator, or a VT-100 terminal.

Ethernet Port

The access point has one 10BASE-T/100BASE-TX RJ-45 port that can be attached directly to 10BASE-T/100BASE-TX LAN segments. These segments must conform to the IEEE 802.3 or 802.3u specifications.

This port supports automatic MDI/MDI-X operation, so you can use straight-through cables for all network connections to PCs, switches, or hubs.

The access point appears as an Ethernet node and performs a bridging function by moving packets from the wired LAN to remote workstations on the wireless infrastructure.

Note: The RJ-45 port also supports Power over Ethernet (PoE) based on the IEEE 802.3af standard. Refer to the description for the "Power Connector" for information on supplying power to the access point's network port from a network device, such as a switch, that provides Power over Ethernet (PoE).

Reset Button

This button is used to reset the access point or restore the factory default configuration. If you hold down the button for less than 5 seconds, the access point will perform a hardware reset. If you hold down the button for 5 seconds or more, any configuration changes you may have made are removed, and the factory default configuration is restored to the access point.

Power Connector

The access point does not have a power switch. It is powered on when connected to the AC power adapter, and the power adapter is connected to a power source. The power adapter automatically adjusts to any voltage between 100-240 volts at 50 or 60 Hz. No voltage range settings are required.

The access point may also receive Power over Ethernet (PoE) from a switch or other network device that supplies power over the network cable based on the IEEE 802 3af standard

Note that if the access point is connected to a PoE source device and also connected to a local power source through the AC power adapter, PoE will be disabled.

Features and Benefits

- Local network connection via 10/100 Mbps Ethernet ports or 54 Mbps wireless interface (supporting up to 128 mobile users)
- IEEE 802.11b and 802.11g compliant
- Interoperable with multiple vendors based on the IEEE 802.11f protocol
- Advanced security through 64/128/152-bit Wired Equivalent Protection (WEP) encryption, IEEE 802.1X authentication via a RADIUS server, Wi-Fi Protected Access (WPA), and MAC address filtering features to protect your sensitive data and authenticate only authorized users to your network
- Provides seamless roaming within the IEEE 802.11b and 802.11g WLAN environment
- Scans all available channels and selects the best channel for each client based on the signal-to-noise ratio
- Allows the country of operation to be set to match regulatory requirements (for countries outside of the United States)

System Defaults

The following table lists some of the access point's basic system defaults. To reset the access point defaults, use the CLI command "reset configuration" from the Exec level prompt.

Table 1-1. System Defaults		
Feature	Parameter	Default
Identification	System Name	SMC
Administration	User Name	admin
	Password	smcadmin
General	HTTP Server	Enabled
	HTTP Server Port	80
	HTTP Server	Enabled
	HTTP Server Port	443
TCP/IP	DHCP	Enabled
	IP Address	192.168.2.2
	Subnet Mask	255.255.255.0
	Default Gateway	0.0.0.0
	Primary DNS IP	0.0.0.0
	Secondary DNS IP	0.0.0.0
RADIUS (Primary and	IP Address	0.0.0.0
Secondary)	Port	1812
	Key	DEFAULT
	Timeout	5 seconds
	Retransmit attempts	3
	Accounting Port	0 (Disabled)
	Interim Update Timeout	3600 seconds
SSH	Server Status	Enabled
	Server Port	22
PPPoE	PPPoE Status	Disabled

Table 1-1. System Defaults		
Feature	Parameter	Default
MAC Authentication	MAC	Disabled
	Authentication Session Timeout	0 minutes (disabled)
	Local MAC System Default	Allowed
	Local MAC Permission	Allowed
802.1X Authentication	Status	Disabled
	Broadcast Key Refresh	0 minutes (disabled)
	Session Key Refresh	0 minutes (disabled)
	Reauthentication Refresh Rate	0 seconds (disabled)
	Supplicant	Disabled
VLAN	Management VLAN ID	1
	VLAN ID (VAP Interface)	1
	VLAN Tag Support	Disabled
QoS	QoS Mode	Off
	SVP (SpectraLink Voice Priority)	Disabled
Filter Control	Local Bridge	Disabled
	AP Management	Enabled
	Ethernet Type	Disabled
SNMP	Status	Enabled
	Location	null
	Contact	null
	Community (Read Only)	Public
	Community (Read/Write)	Private
	Traps	Enabled
	Trap Destination (1-4)	Disabled
	Trap Destination IP Address	null
	Trap Destination Community Name	Public
	SNMP v3 Groups	RO RWAuth RWPriv
	SNMP v3 Users	none


Table 1-1. System Defaults		
Feature	Parameter	Default
System Logging	Syslog	Disabled
	Logging Host	Disabled
	Logging Console	Disabled
	IP Address / Host Name	0.0.0.0
	Logging Level	Informational
	Logging Facility Type	16
System Clock	SNTP Server Status	Enabled
	SNTP Server 1 IP	137.92.140.80
	SNTP Server 2 IP	192.43.244.18
	Date and Time	00:00, Jan 1, 1970 (when there is no time server)
	Daylight Saving Time	Disabled
	Time Zone	GMT-5 (Eastern Time, US and Canada)
Ethernet Interface	Speed and Duplex	Auto
Wireless Interface 802.11b/g	IAPP	Enabled
602.11b/g	SSID	SMC
	Radio Mode	b+g
	Status	Disabled
	Auto Channel Select	Enabled
	Closed System	Disabled
	Transmit Power	Full
	Max Station Data Rate	54 Mbps
	Multicast Data Rate	5.5 Mbps
	Preamble Length	Long
	Beacon Interval	100 TUs
	Data Beacon Rate (DTIM Interval)	1 beacon
	RTS Threshold	2347 bytes
	Association Timeout Interval	30 minutes
	Authentication Timeout Interval	60 minutes
	Rogue AP Detection	Disabled
	Antenna Control Method	Diversity

Table 1-1. System Defaults		
Feature	Parameter	Default
Wireless Interface 802.11b/g (contd.)	Antenna ID	0x0000
	Antenna Location	Indoor
Wireless Security 802.11b/g	Authentication Type	Open System
	Data Encryption	Disabled
	WEP Key Length	128 bits
	WEP Key Type	Hexadecimal
	WEP Transmit Key Number	1
	WEP Keys	null
	WPA Configuration Mode	WEP Only (Disabled)
	WPA Key Management	WPA Pre-shared Key
	WPA PSK Type	Alphanumeric
	Multicast Cipher	WEP
Link Integrity	Status	Disabled
	Ping Interval	30 seconds
	Fail Retry Count	6

Chapter 2: Hardware Installation

- Select a Site Choose a proper place for the access point. In general, the best location is at the center of your wireless coverage area, within line of sight of all wireless devices. Try to place the access point in a position that can best cover its Basic Service Set (refer to "Infrastructure Wireless LAN" on page 3-3). For optimum performance, consider these points:
 - Mount the access point as high as possible above any obstructions in the coverage area.
 - Avoid mounting next to or near building support columns or other obstructions that may cause reduced signal or null zones in parts of the coverage area.
 - Mount away from any signal absorbing or reflecting structures (such as those containing metal).
- Mount the Access Point The access point can be mounted on any horizontal surface.

Mounting on a horizontal surface – To keep the access point from sliding on the surface, attach the four rubber feet provided in the accessory kit to the marked circles on the bottom of the access point.

 Lock the Access Point in Place – To prevent unauthorized removal of the access point, you can use a Kensington Slim MicroSaver security cable (not included) to attach the access point to a fixed object.

 Connect the Power Cord – Connect the power adapter to the access point, and the power cord to an AC power outlet.

Otherwise, the access point can derive its operating power directly from the RJ-45 port when connected to a device that provides IEEE 802.3af compliant Power over Ethernet (PoE).

Note: If the access point is connected to both a PoE source device and an AC power source, AC power will be disabled.

Caution: Use ONLY the power adapter supplied with this access point. Otherwise, the product may be damaged.

- 5. Observe the Self Test When you power on the access point, verify that the PWR indicator stops flashing and remains on, and that the other indicators start functioning as described under "LED Indicators" on page 1-3. If the PWR LED does not stop flashing, the self test has not completed correctly. Refer to "Troubleshooting" on page A-1.
- 6. Connect the Ethernet Cable The access point can be wired to a 10/100 Mbps Ethernet through a network device such as a hub or a switch. Connect your network to the RJ-45 port on the back panel with category 3, 4, or 5 UTP Ethernet cable. When the access point and the connected device are powered on, the Ethernet Link LED should light indicating a valid network connection. If this LED fails to turn on refer to "Troubleshooting" on page A-1.

Note: The RJ-45 port on the access point supports auto=MDI/MDI-X operation, so you can use either straight-through or crossover cable to connect to switches or PCs.

- 7. Position the Antennas Each antenna emits a radiation pattern that is toroidal (doughnut shaped), with the coverage extending most in the direction perpendicular to the antenna. Therefore, the antennas should be oriented so that the radio coverage pattern fills the intended horizontal space. Also, the diversity antennas should both be positioned along the same axes, providing the same coverage area. For example, if the access point is mounted on a horizontal surface, both antennas should be positioned pointing vertically up to provide optimum coverage.
- 8. Connect the Console Port Connect the console cable (included) to the RS-232 console port for accessing the command-line interface. You can manage the access point using the console port (Chapter 6), the web interface (Chapter 5), or SNMP management software such as SMC's EliteView.

Chapter 3: Network Configuration

Wireless networks support a stand-alone configuration as well as an integrated configuration with 10/100 Mbps Ethernet LANs. The 2.4 GHz Wireless Access Point also provides repeater and bridging services.

Access points can be deployed to support wireless clients and connect wired LANs in the following configurations:

- · Ad hoc for departmental, SOHO or enterprise LANs
- Infrastructure for wireless LANs
- · Infrastructure wireless LAN for roaming wireless PCs
- Infrastructure wireless bridge to connect wired LANs
- Infrastructure wireless repeater for extended range

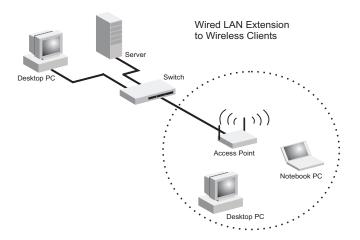
The 802.11b and 802.11g frequency band which operates at 2.4 GHz can easily encounter interference from other 2.4 GHz devices, such as other 802.11b or g wireless devices, cordless phones and microwave ovens. If you experience poor wireless LAN performance, try the following measures:

- · Limit any possible sources of radio interference within the service area
- Increase the distance between neighboring access points
- Decrease the signal strength of neighboring access points
- Increase the channel separation of neighboring access points (e.g. up to 5 channels of separation for 802.11b and 802.11g)

Network Topologies

Ad Hoc Wireless LAN (no Access Point)

An ad hoc wireless LAN consists of a group of computers, each equipped with a wireless adapter, connected via radio signals as an independent wireless LAN. Computers in a specific ad hoc wireless LAN must therefore be configured to the same radio channel. An ad hoc wireless LAN can be used for a branch office or SOHO operation.

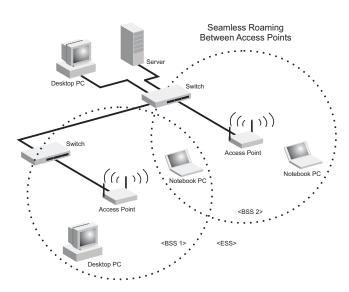


Infrastructure Wireless LAN

The access point also provides access to a wired LAN for wireless workstations. An integrated wired/wireless LAN is called an Infrastructure configuration. A Basic Service Set (BSS) consists of a group of wireless PC users, and an access point that is directly connected to the wired LAN. Each wireless PC in this BSS can talk to any computer in its wireless group via a radio link, or access other computers or network resources in the wired LAN infrastructure via the access point.

The infrastructure configuration not only extends the accessibility of wireless PCs to the wired LAN, but also increases the effective wireless transmission range for wireless PCs by passing their signal through one or more access points.

A wireless infrastructure can be used for access to a central database, or for connection between mobile workers, as shown in the following figure.

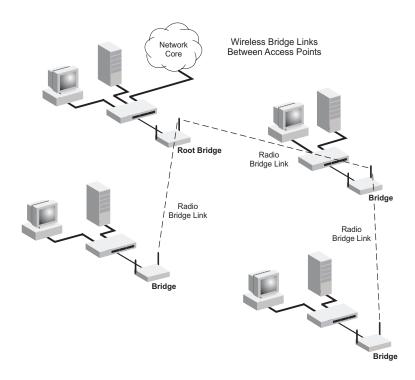

3-3

Infrastructure Wireless LAN for Roaming Wireless PCs

The Basic Service Set (BSS) defines the communications domain for each access point and its associated wireless clients. The BSS ID is a 48-bit binary number based on the access point's wireless MAC address, and is set automatically and transparently as clients associate with the access point. The BSS ID is used in frames sent between the access point and its clients to identify traffic in the service area.

The BSS ID is only set by the access point, never by its clients. The clients only need to set the Service Set Identifier (SSID) that identifies the service set provided by one or more access points. The SSID can be manually configured by the clients, can be detected in an access point's beacon, or can be obtained by querying for the identity of the nearest access point. For clients that do not need to roam, set the SSID for the wireless card to that used by the access point to which you want to connect.

A wireless infrastructure can also support roaming for mobile workers. More than one access point can be configured to create an Extended Service Set (ESS). By placing the access points so that a continuous coverage area is created, wireless users within this ESS can roam freely. All wireless network cards and adapters and wireless access points within a specific ESS must be configured with the same SSID.

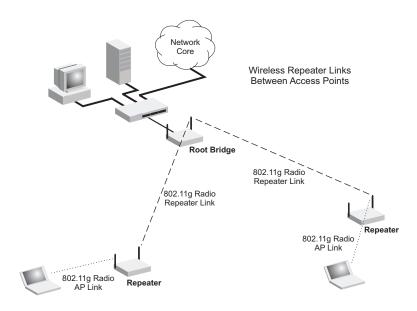

Infrastructure Wireless Bridge

The IEEE 802.11 standard defines a WIreless Distribution System (WDS) for bridge connections between BSS areas (access points). The access point uses WDS to forward traffic on links between units.

The access point supports WDS bridge links on the 2.4 GHz (802.11b/g) band and can be used with various external antennas to offer flexible deployment options.

Up to six WDS bridge links can be specified for each unit in the wireless bridge network. One unit only must be configured as the "root bridge" in the wireless network. The root bridge should be the unit connected to the main core of the wired LAN. Other bridges must configure one "parent" link to the root bridge or to a bridge connected to the root bridge. The other five available WDS links can be specified as "child" links to other bridges. This forms a tiered-star topology for the wireless bridge network.

When set to WDS bridging mode, only other units set to bridge mode can associate to the access point. The access point cannot support wireless clients and bridging at the same time.



3-5

Infrastructure Wireless Repeater

The access point can also operate in a bridge "repeater" mode to extend the range of links to wireless clients. The access point uses WDS to forward traffic between the repeater bridge and the root bridge. The access point supports up to six WDS repeater links.

In repeater mode, the access point does not support an Ethernet link to a wired LAN. Note that when the access point operates in this mode only half the normal throughput is possible. This is because the access point has to receive and then re-transmit all data on the same channel.

Chapter 4: Initial Configuration

The 2.4 GHz Wireless Access Point offers a variety of management options, including a web-based interface, a direct connection to the console port, Telnet, Secure Shell (SSH), or using SNMP software.

The initial configuration steps can be made through the web browser interface or CLI. The access point requests an IP address via DHCP by default. If no response is received from the DHCP server, then the access point uses the default address 192.168.2.2. If this address is not compatible with your network, you can first use the command line interface (CLI) as described below to configure a valid address.

Note: Units sold in countries outside the United States are not configured with a specific country code. You must use the CLI to set the country code and enable wireless operation (page 4-3).

Initial Setup through the CLI

Required Connections

The access point provides an RS-232 serial port that enables a connection to a PC or terminal for monitoring and configuration. Attach a VT100-compatible terminal, or a PC running a terminal emulation program to the access point. You can use the console cable provided with this package, or use a cable that complies with the wiring assignments shown on page B-3.

To connect to the console port, complete the following steps:

- Connect the console cable to the serial port on a terminal, or a PC running terminal emulation software, and tighten the captive retaining screws on the DB-9 connector
- Connect the other end of the cable to the RS-232 serial port on the access point.
- 3. Make sure the terminal emulation software is set as follows:
 - Select the appropriate serial port (COM port 1 or 2).
 - · Set the data rate to 9600 baud.
 - · Set the data format to 8 data bits, 1 stop bit, and no parity.
 - · Set flow control to none.
 - · Set the emulation mode to VT100.
 - When using HyperTerminal, select Terminal keys, not Windows keys.
- 4. Once you have set up the terminal correctly, press the [Enter] key to initiate the console connection. The console login screen will be displayed.

For a description of how to use the CLI, see "Using the Command Line Interface" on page 6-1. For a list of all the CLI commands and detailed information on using the CLI, refer to "Command Groups" on page 6-6.

Initial Configuration Steps

Logging In – Enter "admin" for the user name, and "smcadmin" for the password. The CLI prompt appears displaying the access point's name.

```
Username: admin
Password: smcadmin
Enterprise AP#
```

Setting the IP Address – By default, the access point is configured to obtain IP address settings from a DHCP server. If a DHCP server is not available, the IP address defaults to 192.168.2.2, which may not be compatible with your network. You will therefore have to use the command line interface (CLI) to assign an IP address that is compatible with your network.

Type "configure" to enter configuration mode, then type "interface ethernet" to access the Ethernet interface-configuration mode.

```
Enterprise AP#configure
Enterprise AP(config)#interface ethernet
Enterprise AP(config-if)#
```

Type "no ip dhcp" to disable DHCP client mode. Then type "ip address *ip-address netmask gateway*," where "ip-address" is the access point's IP address, "netmask" is the network mask for the network, and "gateway" is the default gateway router. Check with your system administrator to obtain an IP address that is compatible with your network.

```
Enterprise AP(if-ethernet) #no ip dhcp
Enterprise AP(if-ethernet) #ip address 192.168.2.2
   255.255.255.0 192.168.2.254
Enterprise AP(if-ethernet) #
```

After configuring the access point's IP parameters, you can access the management interface from anywhere within the attached network. The command line interface can also be accessed using Telnet from any computer attached to the network.

Setting the Country Code – Units sold in the United States are configured by default to use only radio channels 1-11 in 802.11b or 802.11g mode as defined by FCC regulations. Units sold in other countries are configured by default without a country code (i.e., 99). You must use the CLI to set the country code. Setting the country code restricts operation of the access point to the radio channels and transmit power levels permitted for wireless networks in the specified country.

Type "exit" to leave configuration mode. Then type "country?" to display the list of countries. Select the code for your country, and enter the country command again, following by your country code (e.g., tw for Taiwan).

```
Enterprise AP#country tw
Enterprise AP#
```

Note: The CLI examples shown later in this manual abbreviate the console prompt to just "AP." The console prompt can be configured using the "prompt" command (page 6-14).

Logging In

There are only a few basic steps you need to complete to connect the access point to your corporate network, and provide network access to wireless clients.

The access point can be managed by any computer using a web browser (Internet Explorer 5.0 or above, or Netscape 6.2 or above). Enter the default IP address: http://192.168.2.2

Logging In – Enter the username "admin," and password "smcadmin" then click LOGIN. For information on configuring a user name and password, see page 5-28.

The home page displays the Main Menu.


SYSTEM Identification TCP/IP Settings RADIUS SSH Settings Authentication Filter Control VLAN WDS Settings AP Management Administration System Log SNMP SNMP Trap Filters SNMP Trap gets SLOT 1 Radio G Radio Settings Security RADIUS RADIus

Chapter 5: System Configuration

Before continuing with advanced configuration, first complete the initial configuration steps described in Chapter 4 to set up an IP address for the access point.

The access point can be managed by any computer using a web browser (Internet Explorer 5.0 or above, or Netscape 6.2 or above). Enter the configured IP address of the access point, or use the default address: http://192.168.2.2

To log into the access point, enter the default user name "admin" and the password "smcadmin", then press "LOGIN". When the home page displays, click on Advanced Setup. The following page will display.

The information in this chapter is organized to reflect the structure of the web screens for easy reference. However, it is recommended that you configure a user name and password as the first step under "Administration" to control management access to this device (page 5-28).

Advanced Configuration

The Advanced Configuration pages include the following options.

Table 5-2. Menu				
Menu	Description	Page		
System	Configures basic administrative and client access	5-3		
Identification	Specifies the host name	5-3		
TCP / IP Settings	Configures the IP address, subnet mask, gateway, and domain name servers	5-5		
RADIUS	Configures the RADIUS server for wireless client authentication and accounting	5-7		
SSH Settings	Configures Secure Shell management access	5-11		
Authentication	Configures 802.1X client authentication, with an option for MAC address authentication	5-12		
Filter Control	Filters communications between wireless clients, access to the management interface from wireless clients, and traffic matching specific Ethernet protocol types	5-17		
VLAN	Enables VLAN support and sets the management VLAN ID	5-19		
WDS Settings	Configures bridge or repeater modes for each radio interface and sets spanning tree parameters	5-21		
AP Management	Configures access to management interfaces	5-27		
Administration	Configures user name and password for management access; upgrades software from local file, FTP or TFTP server; resets configuration settings to factory defaults; and resets the access point	5-28		
System Log	Controls logging of error messages; sets the system clock via SNTP server or manual configuration	5-33		
SNMP	Configures SNMP settings	5-37		
SNMP	Controls access to this access point from management stations using SNMP, as well as the hosts that will receive trap messages	5-37		
SNMP Trap Filters	Defines trap filters for SNMPv3 users	5-45		
SNMP Targets	Specifies SNMPv3 users that will receive trap messages	5-47		
Radio Interface G	Configures the IEEE 802.11g interface	5-49		
Radio Settings	Configures common radio signal parameters and other settings for each VAP interface	5-49		
Security	Enables each VAP interface, sets the SSID, and configures wireless security	5-66		
Status	Displays information about the access point and wireless clients	5-85		
AP Status	Displays configuration settings for the basic system and the wireless interface	5-85		

Table 5-2. Menu			
Menu	Description	Page	
Station Station	Shows the wireless clients currently associated with the access point	5-88	
Event Logs	Shows log messages stored in memory	5-91	

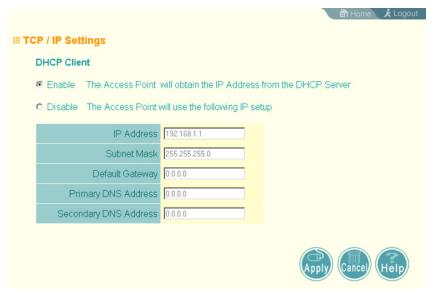
System Identification

The system name for the access point can be left at its default setting. However, modifying this parameter can help you to more easily distinguish different devices in your network.

System Name – An alias for the access point, enabling the device to be uniquely identified on the network. (Default: Enterprise Wireless AP; Range: 1-32 characters)

CLI Commands for System Identification – Enter the global configuration mode, and use the **system name** command to specify a new system name. Then return to the Exec mode, and use the **show system** command to display the changes to the system identification settings.

```
Enterprise AP#config
Enterprise AP(config) #system name R&D
                                                                  6-14
Enterprise AP(config)#end
                                                                  6-87
Enterprise AP#show system
                                                                  6-22
Enterprise AP#config
                                                                  6-8
Enter configuration commands, one per line.
Enterprise AP(config) #system name R&D
                                                                6-14
Enterprise AP(config)#end
                                                                 6-87
Enterprise AP#show system
                                                                 6-22
System Up time : 0 days, 0 hours, 32 minutes, 22 seconds
System Name : R&D
System Location :
System Contact
System Contact : Contact
System Country Code : US - UNITED STATES
MAC Address : 00-12-CF-12-34-60
Radio A MAC Address : 00-12-CF-12-34-61
Radio G MAC Address : 00-12-CF-12-34-65
IP Address : 192.168.2.2
Subnet Mask : 255.255.255.0
Default Gateway : 0.0.0.0
VLAN State : DISABLED
Management VLAN ID(AP): 1
IAPP State : ENABLED
DHCP Client : ENABLED HTTP Server : ENABLED
HTTP Server Port : 80
HTTPS Server : ENAMED : ENAMED : HTTPS Server Port : 443
                       : ENABLED
Slot Status
                        : Single band(b/g)
Boot Rom Version : v1.1.5
Software Version : v5.0.0.0
SSH Server
                        : ENABLED
SSH Server Port : 22
Telnet Server : ENABLED
DHCP Relay
                        : DISABLED
______
Enterprise AP#
```



TCP / IP Settings

Configuring the access point with an IP address expands your ability to manage the access point. A number of access point features depend on IP addressing to operate.

Note: You can use the web browser interface to access IP addressing only if the access point already has an IP address that is reachable through your network.

By default, the access point will be automatically configured with IP settings from a Dynamic Host Configuration Protocol (DHCP) server. However, if you are not using a DHCP server to configure IP addressing, use the CLI to manually configure the initial IP values (see page 4-2). After you have network access to the access point, you can use the web browser interface to modify the initial IP configuration, if needed.

Note: If there is no DHCP server on your network, or DHCP fails, the access point will automatically start up with a default IP address of 192.168.2.2.

DHCP Client (Enable) – Select this option to obtain the IP settings for the access point from a DHCP (Dynamic Host Configuration Protocol) server. The IP address, subnet mask, default gateway, and Domain Name Server (DNS) address are dynamically assigned to the access point by the network DHCP server. (Default: Enabled)

DHCP Client (Disable) – Select this option to manually configure a static address for the access point.

 IP Address: The IP address of the access point. Valid IP addresses consist of four decimal numbers, 0 to 255, separated by periods.

5 System Configuration

- Subnet Mask: The mask that identifies the host address bits used for routing to specific subnets.
- Default Gateway: The default gateway is the IP address of the router for the access
 point, which is used if the requested destination address is not on the local subnet.
 If you have management stations, DNS, RADIUS, or other network servers
 located on another subnet, type the IP address of the default gateway router in the
 text field provided. Otherwise, leave the address as all zeros (0.0.0.0).
- Primary and Secondary DNS Address: The IP address of Domain Name Servers
 on the network. A DNS maps numerical IP addresses to domain names and can
 be used to identify network hosts by familiar names instead of the IP addresses.
 If you have one or more DNS servers located on the local network, type the IP
 addresses in the text fields provided. Otherwise, leave the addresses as all zeros
 (0.0.0.0).

CLI Commands for TCP/IP Settings – From the global configuration mode, enter the interface configuration mode with the **interface ethernet** command. Use the **ip dhcp** command to enable the DHCP client, or **no ip dhcp** to disable it. To manually configure an address, specify the new IP address, subnet mask, and default gateway using the **ip address** command. To specify DNS server addresses use the **dns server** command. Then use the **show interface ethernet** command from the Exec mode to display the current IP settings.

```
Enterprise AP(config)#interface ethernet
                                                6-87
Enter Ethernet configuration commands, one per line.
Enterprise AP(if-ethernet)#no ip dhcp
                                                6-89
Enterprise AP(if-ethernet) #ip address 192.168.1.2
 255.255.255.0 192.168.1.253
                                                6-88
Enterprise AP(if-ethernet) #dns primary-server 192.168.1.556-88
Enterprise AP(if-ethernet) #dns secondary-server 10.1.0.556-88
Enterprise AP(config)#end
                                                6-8
Enterprise AP#show interface ethernet
                                                6-91
Ethernet Interface Information
-----
IP Address
                 : 192.168.1.2
Subnet Mask
                 : 255.255.255.0
Default Gateway : 192.168.1.253
Primary DNS
                 : 192.168.1.55
                 : 10.1.0.55
Secondary DNS
                 : 100Base-TX Full Duplex
Speed-duplex
Admin status
                 qU:
Operational status : Up
_____
Enterprise AP#
```

RADIUS

Remote Authentication Dial-in User Service (RADIUS) is an authentication protocol that uses software running on a central server to control access to RADIUS-aware devices on the network. An authentication server contains a database of user credentials for each user that requires access to the network.

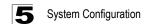
A primary RADIUS server must be specified for the access point to implement IEEE 802.1X network access control and Wi-Fi Protected Access (WPA) wireless security. A secondary RADIUS server may also be specified as a backup should the primary server fail or become inaccessible.

In addition, the configured RADIUS server can also act as a RADIUS Accounting server and receive user-session accounting information from the access point. RADIUS Accounting can be used to provide valuable information on user activity in the network

Note: This guide assumes that you have already configured RADIUS server(s) to support the access point. Configuration of RADIUS server software is beyond the scope of this guide, refer to the documentation provided with the RADIUS server software.

Home & Logout **III RADIUS MAC Address Format** No Delimeter ⊃ ⊃ OOOOOOOOOO O No Delimeter → OOOOOOOOOOO O No Delimeter → OOOOOOOOOOOO O No Delimeter → OOOOOOOOOOOOO O No Delimeter → OOOOOOOOOOOOO O No Delimeter → OOOOOOOOOOOO O O No Delimeter → OOOOOOOOOOOO O O No Delimeter → OOOOOOOOOOOO C Single Dash)000000(-)000000(Multi-Dash)0(-)0(-)0(-)0(-)0(-)0(Multi-Colon **VLAN ID Format** Ascii Hex Primary RADIUS Server Setup IP Address 0.0.0.0 Port 1812 Key Timeout (seconds) 5 Retransmit attempts 3 Accounting Port 0 Interim Update Timeout 3600 Secondary RADIUS Server Setup IP Address 0.0.0.0 Port 1812 Key *** Timeout (seconds) 5 Retransmit attempts 3 Accounting Port 0 Interim Update Timeout 3600 pply) (Cancel) (He

MAC Address Format – MAC addresses can be specified in one of four formats, using no delimeter, with a single dash delimeter, with multiple dash delimeters, and with multiple colon delimeters.


VLAN ID Format – A VLAN ID (a number between 1 and 4094) can be assigned to each client after successful authentication using IEEE 802.1X and a central RADIUS server. The user VLAN IDs must be configured on the RADIUS server for each user authorized to access the network. VLAN IDs can be entered as hexadecimal numbers or as ASCII strings.

Primary Radius Server Setup – Configure the following settings to use RADIUS authentication on the access point.

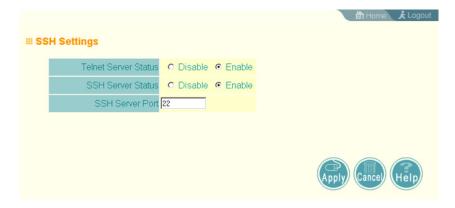
- IP Address: Specifies the IP address or host name of the RADIUS server.
- Port: The UDP port number used by the RADIUS server for authentication messages. (Range: 1024-65535; Default: 1812)
- Key: A shared text string used to encrypt messages between the access point and the RADIUS server. Be sure that the same text string is specified on the RADIUS server. Do not use blank spaces in the string. (Maximum length: 255 characters)
- Timeout: Number of seconds the access point waits for a reply from the RADIUS server before resending a request. (Range: 1-60 seconds; Default: 5)
- Retransmit attempts: The number of times the access point tries to resend a request to the RADIUS server before authentication fails. (Range: 1-30; Default: 3)
- Accounting Port: The RADIUS Accounting server UDP port used for accounting messages. (Range: 0 or 1024-65535; Default: 0, disabled)
- Interim Update Timeout: The interval between transmitting accounting updates to the RADIUS server. (Range: 60-86400; Default: 3600 seconds)

Note: For the Timeout and Retransmit attempts fields, accept the default values unless you experience problems connecting to the RADIUS server over the network.

Secondary Radius Server Setup – Configure a secondary RADIUS server to provide a backup in case the primary server fails. The access point uses the secondary server if the primary server fails or becomes inaccessible. Once the access point switches over to the secondary server, it periodically attempts to establish communication again with primary server. If communication with the primary server is re-established, the secondary server reverts to a backup role.

CLI Commands for RADIUS – From the global configuration mode, use the **radius-server address** command to specify the address of the primary or secondary RADIUS servers. (The following example configures the settings for the primary RADIUS server.) Configure the other parameters for the RADIUS server. Then use the **show show radius** command from the Exec mode to display the current settings for the primary and secondary RADIUS servers.

```
Enterprise AP(config) #radius-server address 192.168.1.256-58
Enterprise AP(config) #radius-server port 181
Enterprise AP(config) #radius-server key green
Enterprise AP(config) #radius-server timeout 10
Enterprise AP(config) #radius-server retransmit 5
                                             6-60
Enterprise AP(config) #radius-server port-accounting 18136-61
Enterprise AP(confiq) #radius-server timeout-interim 5006-61
Enterprise AP(config)#exit
Enterprise AP#show radius
                                              6-63
Radius Server Information
______
               : 192.168.1.25
Port
               : 181
               : ****
Key
Retransmit
Timeout
               : 5
               : 10
Radius MAC format : no-delimiter
Radius VLAN format : HEX
_____
Radius Secondary Server Information
_____
ΤP
               : 0.0.0.0
               : 1812
Port
               : ****
Retransmit
Timeout
               : 3
               : 5
Radius MAC format : no-delimiter
Radius VLAN format : HEX
_____
Enterprise AP#
```



SSH Settings

Telnet is a remote management tool that can be used to configure the access point from anywhere in the network. However, Telnet is not secure from hostile attacks. The Secure Shell (SSH) can act as a secure replacement for Telnet. The SSH protocol uses generated public keys to encrypt all data transfers passing between the access point and SSH-enabled management station clients and ensures that data traveling over the network arrives unaltered. Clients can then securely use the local user name and password for access authentication.

Note that SSH client software needs to be installed on the management station to access the access point for management via the SSH protocol.

Notes: 1. The access point supports only SSH version 2.0.

After boot up, the SSH server needs about two minutes to generate host encryption keys. The SSH server is disabled while the keys are being generated.

SSH Settings

- Telnet Server Status: Enables or disables the Telnet server. (Default: Enabled)
- SSH Server Status: Enables or disables the SSH server. (Default: Enabled)
- SSH Server Port: Sets the UDP port for the SSH server. (Range: 1-65535; Default: 22)

5 System Configuration

CLI Commands for SSH – To enable the SSH server, use the **ip ssh-server enable** command from the CLI Ethernet interface configuration mode. To set the SSH server UDP port, use the **ip ssh-server port** command. To view the current settings, use the **show system** command from the CLI Exec mode (not shown in the following example).

```
Enterprise AP(if-ethernet) #no ip telnet-server 6-17
Enterprise AP(if-ethernet) #ip ssh-server enable 6-16
Enterprise AP(if-ethernet) #ip ssh-server port 1124 6-16
Enterprise AP(if-ethernet) #exit
Enterprise AP(if-ethernet) #configure
```

Authentication

Wireless clients can be authenticated for network access by checking their MAC address against the local database configured on the access point, or by using a database configured on a central RADIUS server. Alternatively, authentication can be implemented using the IEEE 802.1X network access control protocol.

A client's MAC address provides relatively weak user authentication, since MAC addresses can be easily captured and used by another station to break into the network. Using 802.1X provides more robust user authentication using user names and passwords or digital certificates. You can configure the access point to use both MAC address and 802.1X authentication, with client station MAC authentication occurring prior to IEEE 802.1X authentication. However, it is better to choose one or the other, as appropriate.

Take note of the following points before configuring MAC address or 802.1X authentication:

- Use MAC address authentication for a small network with a limited number of
 users. MAC addresses can be manually configured on the access point itself
 without the need to set up a RADIUS server, but managing a large number of MAC
 addresses across many access points is very cumbersome. A RADIUS server can
 be used to centrally manage a larger database of user MAC addresses.
- Use IEEE 802.1X authentication for networks with a larger number of users and
 where security is the most important issue. When using 802.1X authentication, a
 RADIUS server is required in the wired network to centrally manage the credentials
 of the wireless clients. It also provides a mechanism for enhanced network security
 using dynamic encryption key rotation or W-Fi Protected Access (WPA).

Note: If you configure RADIUS MAC authentication together with 802.1X, RADIUS MAC address authentication is performed prior to 802.1X authentication. If RADIUS MAC authentication succeeds, then 802.1X authentication is performed. If RADIUS MAC authentication fails, 802.1X authentication is not performed.

The access point can also operate in a 802.1X supplicant mode. This enables the
access point itself to be authenticated with a RADIUS server using a configured
MD5 user name and password. This prevents rogue access points from gaining
access to the network.

	Home 🖈 Logout
Authentication	
MAC Authentication : Disable	
802.1x supplicant :	
Username	
Password	
■ Local MAC Authentication :	
System Default C Deny	
MAC Authentication Settings :	
MAC Address Permission	Update
C Deny © Allow C Delete	Update
MAC Authentication Table :	
Number MAC Address Permission	n
	Apply Cancel Help

MAC Authentication – You can configure a list of the MAC addresses for wireless clients that are authorized to access the network. This provides a basic level of authentication for wireless clients attempting to gain access to the network. A database of authorized MAC addresses can be stored locally on the access point or remotely on a central RADIUS server. (Default: Disabled)

- Disabled: No checks are performed on an associating station's MAC address.
- Local MAC: The MAC address of the associating station is compared against the local database stored on the access point. Use the Local MAC Authentication section of this web page to set up the local database, and configure all access points in the wireless network service area with the same MAC address database.

5 System Configuration

 Radius MAC: The MAC address of the associating station is sent to a configured RADIUS server for authentication. When using a RADIUS authentication server for MAC address authentication, the server must first be configured in the Radius window (see "RADIUS" on page 5-7). The database of MAC addresses and filtering policy must be defined in the RADIUS server.

Note: MAC addresses on the RADIUS server can be entered in four different formats (see "RADIUS" on page 5-7).

802.1X Supplicant – The access point can also operate in a 802.1X supplicant mode. This enables the access point itself to be authenticated with a RADIUS server using a configured MD5 user name and password. This prevents rogue access points from gaining access to the network.

Local MAC Authentication – Configures the local MAC authentication database. The MAC database provides a mechanism to take certain actions based on a wireless client's MAC address. The MAC list can be configured to allow or deny network access to specific clients.

- System Default: Specifies a default action for all unknown MAC addresses (that is, those not listed in the local MAC database).
 - Deny: Blocks access for all MAC addresses except those listed in the local database as "Allow."
 - Allow: Permits access for all MAC addresses except those listed in the local database as "Deny."
- MAC Authentication Settings: Enters specified MAC addresses and permissions into the local MAC database.
 - MAC Address: Physical address of a client. Enter six pairs of hexadecimal digits separated by hyphens; for example, 00-90-D1-12-AB-89.
 - Permission: Select Allow to permit access or Deny to block access. If Delete is selected, the specified MAC address entry is removed from the database.
 - Update: Enters the specified MAC address and permission setting into the local database.
- MAC Authentication Table: Displays current entries in the local MAC database.

CLI Commands for Local MAC Authentication — Use the mac-authentication server command from the global configuration mode to enable local MAC authentication. Use the mac-authentication session-timeout command to set the authentication interval. Set the default action for MAC addresses not in the local table using the address filter default command, then enter MAC addresses in the local table using the address filter entry command. To remove an entry from the table, use the address filter delete command. To display the current settings, use the show authentication command from the Exec mode.

```
Enterprise AP(config) #mac-authentication server local 6-71
Enterprise AP(config) #mac-authentication session-timeout 5 6-71
Enterprise AP(config) #address filter default denied 6-69
Enterprise AP(config) #address filter entry
    00-70-50-cc-99-1a denied
                                                  6 - 70
Enterprise AP(config) #address filter entry
   00-70-50-cc-99-1b allowed
Enterprise AP(config) #address filter entry
    00-70-50-cc-99-1c allowed
Enterprise AP(config) #address filter delete
   00-70-50-cc-99-1c
                                                  6-70
Enterprise AP(config)#exit
Enterprise AP#show authentication
                                                  6-67
Authentication Information
MAC Authentication Server : LOCAL
MAC Auth Session Timeout Value : 0 min
                            : DISABLED
802.1x supplicant
802.1x supplicant user
                            : EMPTY
802.1x supplicant password : EMPTY
Address Filtering
                            : DENIED
System Default: ALLOW addresses not found in filter table.
Filter Table
MAC Address
                     Status
-----
00-70-50-cc-99-1a
                     DENIED
00-70-50-cc-99-1b
                     ALLOWED
_____
Enterprise AP#
```

CLI Commands for *RADIUS MAC Authentication* — Use the **mac-authentication server** command from the global configuration mode to enable remote MAC authentication. Set the timeout value for re-authentication using the **mac-authentication session-timeout** command. Be sure to also configure connection settings for the RADIUS server (not shown in the following example). To display the current settings, use the **show authentication** command from the Exec mode.

```
Enterprise AP(config) #mac-authentication server remote 6-71
Enterprise AP(config) #mac-authentication
   session-timeout 300
                                            6-71
Enterprise AP(config)#exit
Enterprise AP#show authentication
                                            6-67
Authentication Information
_____
MAC Authentication Server
                      : REMOTE
MAC Auth Session Timeout Value : 300 min
802.1x supplicant
                     : DISABLED
                        : EMPTY
802.1x supplicant user
802.1x supplicant password : EMPTY
Address Filtering
                         : DENIED
System Default : DENY addresses not found in filter table.
Filter Table
MAC Address
                   Status
_____
00-70-50-cc-99-1a
                   DENIED
00-70-50-cc-99-1b
                   ALLOWED
______
Enterprise AP#
```

CLI Command for 802.1x Supplicant – To configure the access point to operate as a 802.1X supplicant, first use the 802.1X supplicant user command to set a user name and password for the access point, then use the 802.1X supplicant command to enable the feature. To display the current settings, use the show authentication command from the Exec mode (not shown in the following example)

```
Enterprise AP(config) #802.1X supplicant user SMC2555W dot1xpass 6-67 Enterprise AP(config) #802.1X supplicant 6-67 Enterprise AP(config) #
```

Filter Control

The access point can employ network traffic frame filtering to control access to network resources and increase security. You can prevent communications between wireless clients and prevent access point management from wireless clients. Also, you can block specific Ethernet traffic from being forwarded by the access point.

Inter Client STAs Communication Filter – Sets the global mode for wireless-to-wireless communications between clients associated to Virtual AP (VAP) interfaces on the access point. (Default: Prevent Inter and Intra VAP client Communication)

- Disabled: All clients can communicate with each other through the access point.
- Prevent Intra VAP client communication: When enabled, clients associated with a specific VAP interface cannot establish wireless communications with each other.
 Clients can communicate with clients associated to other VAP interfaces.
- Prevent Inter and Intra VAP client communication: When enabled, clients cannot establish wireless communications with any other client, either those associated to the same VAP interface or any other VAP interface.

AP Management Filter – Controls management access to the access point from wireless clients. Management interfaces include the web, Telnet, or SNMP. (Default: Disabled)

- Disabled: Allows management access from wireless clients.
- · Enabled: Blocks management access from wireless clients.

Uplink Port MAC Address Filtering Status – Prevents traffic with specified source MAC addresses from being forwarded to wireless clients through the access point. You can add a maximum of eight MAC addresses to the filter table. (Default: Disabled)

5 System Configuration

- MAC Address: Specifies a MAC address to filter, in the form xx-xx-xx-xx-xx.
- Permission: Adds or deletes a MAC address from the filtering table.

Ethernet Type Filter – Controls checks on the Ethernet type of all incoming and outgoing Ethernet packets against the protocol filtering table. (Default: Disabled)

- · Disabled: Access point does not filter Ethernet protocol types.
- Enabled: Access point filters Ethernet protocol types based on the configuration of protocol types in the filter table. If the status of a protocol is set to "ON," the protocol is filtered from the access point.

Note: Ethernet protocol types not listed in the filtering table are always forwarded by the access point.

CLI Commands for Bridge Filtering – Use the **filter local-bridge** command from the global configuration mode to prevent wireless-to-wireless communications through the access point. Use the **filter ap-manage** command to restrict management access from wireless clients. To configure Ethernet protocol filtering, use the **filter ethernet-type enable** command to enable filtering and the **filter ethernet-type protocol** command to define the protocols that you want to filter. To remove an entry from the table, use the **address filter delete** command. To display the current settings, use the **show filters** command from the Exec mode.

```
Enterprise AP(config)#filter local-bridge
                                              6 - 72
Enterprise AP(config)#filter ap-manage
                                              6-73
Enterprise AP(config)#filter uplink enable
                                              6-73
Enterprise AP(config)#filter uplink add 00-12-34-56-78-9a6-74
Enterprise AP(config)#filter ethernet-type enable
Enterprise AP(config)#filter ethernet-type protocol ARP6-75
Enterprise AP(config)#exit
Enterprise AP#show filters
                                              6-76
Protocol Filter Information
______
Local Bridge
                 :ENABLED
AP Management
                :ENABLED
Ethernet Type Filter : ENABLED
Enabled Protocol Filters
Protocol: ARP
                                    ISO: 0x0806
______
Enterprise AP#
```


VI AN

The access point can employ VLAN tagging support to control access to network resources and increase security. VLANs separate traffic passing between the access point, associated clients, and the wired network. There can be a VLAN assigned to each associated client, a default VLAN for each VAP (Virtual Access Point) interface, and a management VLAN for the access point.

Note the following points about the access point's VLAN support:

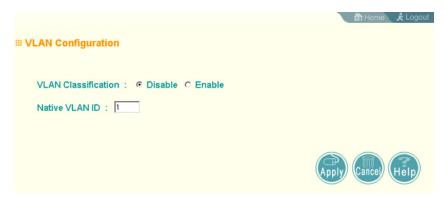
- The management VLAN is for managing the access point through remote management tools, such as the web interface, SSH, SNMP, or Telnet. The access point only accepts management traffic that is tagged with the specified management VLAN ID.
- All wireless clients associated to the access point are assigned to a VLAN. If IEEE 802.1X is being used to authenticate wireless clients, specific VLAN IDs can be configured on the RADIUS server to be assigned to each client. If a client is not assigned to a specific VLAN or if 802.1X is not used, the client is assigned to the default VLAN for the VAP interface with which it is associated. The access point only allows traffic tagged with assigned VLAN IDs or default VLAN IDs to access clients associated on each VAP interface.
- When VLAN support is enabled on the access point, traffic passed to the wired network is tagged with the appropriate VLAN ID, either an assigned client VLAN ID, default VLAN ID, or the management VLAN ID. Traffic received from the wired network must also be tagged with one of these known VLAN IDs. Received traffic that has an unknown VLAN ID or no VLAN tag is dropped.
- When VLAN support is disabled, the access point does not tag traffic passed to the wired network and ignores the VLAN tags on any received frames.

Note: Before enabling VLAN tagging on the access point, be sure to configure the attached network switch port to support tagged VLAN frames from the access point's management VLAN ID, default VLAN IDs, and other client VLAN IDs. Otherwise, connectivity to the access point will be lost when you enable the VLAN feature.

Using IEEE 802.1X and a central RADIUS server, up to 64 VLAN IDs can be mapped to specific wireless clients, allowing users to remain within the same VLAN as they move around a campus site. This feature can also be used to control access to network resources from clients, thereby improving security.

A VLAN ID (1-4094) can be assigned to a client after successful IEEE 802.1X authentication. The client VLAN IDs must be configured on the RADIUS server for each user authorized to access the network. If a client does not have a configured VLAN ID on the RADIUS server, the access point assigns the client to the configured default VLAN ID for the VAP interface.

Note: When using IEEE 802.1X to dynamically assign VLAN IDs, the access point must have 802.1X authentication enabled and a RADIUS server configured. Wireless clients must also support 802.1X client software.


5 System Configuration

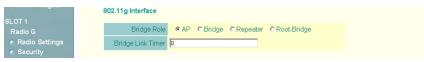
When setting up VLAN IDs for each user on the RADIUS server, be sure to use the RADIUS attributes and values as indicated in the following table.

Number	RADIUS Attribute	Value
64	Tunnel-Type	VLAN (13)
65	Tunnel-Medium-Type	802
81	Tunnel-Private-Group-ID	VLANID (1 to 4094 as hexadecimal or string)

VLAN IDs on the RADIUS server can be entered as hexadecimal digits or a string (see "radius-server vlan-format" on page 6-62).

Note: The specific configuration of RADIUS server software is beyond the scope of this guide. Refer to the documentation provided with the RADIUS server software.

VLAN Classification – Enables or disables VLAN tagging support on the access point.


Native VLAN ID – The VLAN ID that traffic must have to be able to manage the access point. (Range 1-4094; Default: 1)

WDS Settings

Each access point radio interface can be configured to operate in a bridge or repeater mode, which allows it to forward traffic directly to other access point units. To set up bridge links between access point units, you must configure the wireless Distribution System (WDS) forwarding table by specifying the wireless MAC address of all units to which you want to forward traffic. Up to six WDS bridge or repeater links can be specified for each unit in the wireless bridge network.

The Spanning Tree Protocol (STP) can be used to detect and disable network loops, and to provide backup links between bridges. This allows a wireless bridge to interact with other bridging devices (that is, an STP-compliant switch, bridge or router) in your network to ensure that only one route exists between any two stations on the network, and provide backup links which automatically take over when a primary link goes down.

WDS Bridge – Up to six WDS bridge or repeater links (MAC addresses) can be specified for each unit in the wireless bridge network. One unit only must be configured as the "root bridge" in the wireless network. The root bridge is the unit connected to the main core of the wired LAN. Other bridges need to specify one "Parent" link to the root bridge or to a bridge connected to the root bridge. The other five WDS links are available as "Child" links to other bridges.

- Bridge Role Sets the radio to operate in one of the following four modes: (Default: AP)
 - AP (Access Point): Operates as an access point for wireless clients, providing connectivity to a wired LAN.
 - Bridge: Operates as a bridge to other access points. The "Parent" link to the root bridge must be configured. Up to five other "Child" links are available to other bridges.
 - Repeater: Operates as a wireless repeater, extending the range for remote wireless clients and connecting them to the root bridge. The "Parent" link to the root bridge must be configured. In this mode, traffic is not forwarded to the Ethernet port from the radio interface.
 - Root Bridge: Operates as the root bridge in the wireless bridge network. Up to six "Child" links are available to other bridges in the network.
- Bridge Parent The physical layer address of the root bridge unit or the bridge unit connected to the root bridge. (12 hexadecimal digits in the form "xx-xx-xx-xx")
- Bridge Child The physical layer address of other bridge units for which this unit serves as the bridge parent or the root bridge. Note that the first entry under the list of child nodes is reserved for the root bridge, and can only be configured if the role is set to "Root Bridge." (12 hexadecimal digits in the form "xx-xx-xx-xx-xx")

	ridge C Enable C Disal	ble
Bridge Pr (0-65	riority 5535) 32768	
Bridge Max (6-40	(Age sec.)	
Bridge Hello (1-10	Time sec.)	
Bridge Forwarding [(4-30	Delay sec.) 15	
802.11a Interface		
Index	Link Path Cost(1-6553	5) Link Port Priority(0-255)
Parent Node	19	0
Child Node2	19	0
Child Node3	19	0
Child Node4	19	0
Child Node5	19	0
Child Node6	19	0
302.11g Interface		
Index	Link Path Cost(1-65535	
Parent Node	19	0
Child Node2	19	0
Child Node3	19	0
Child Node4	19	0
Child Node5	19	0
Child Node6	19	0
Ethernet Interface		
Link Path Co		Link Port Priority(0-255)
	0	
19		

Spanning Tree Protocol – STP uses a distributed algorithm to select a bridging device (STP-compliant switch, bridge or router) that serves as the root of the spanning tree network. It selects a root port on each bridging device (except for the root device) which incurs the lowest path cost when forwarding a packet from that device to the root device. Then it selects a designated bridging device from each LAN which incurs the lowest path cost when forwarding a packet from that LAN to the root device. All ports connected to designated bridging devices are assigned as

designated ports. After determining the lowest cost spanning tree, it enables all root ports and designated ports, and disables all other ports. Network packets are therefore only forwarded between root ports and designated ports, eliminating any possible network loops.

Once a stable network topology has been established, all bridges listen for Hello BPDUs (Bridge Protocol Data Units) transmitted from the root bridge. If a bridge does not get a Hello BPDU after a predefined interval (Maximum Age), the bridge assumes that the link to the root bridge is down. This bridge will then initiate negotiations with other bridges to reconfigure the network to reestablish a valid network topology.

- Bridge Enables/disables STP on the wireless bridge or repeater. (Default: Disabled)
- Bridge Priority Used in selecting the root device, root port, and designated port.
 The device with the highest priority becomes the STP root device. However, if all
 devices have the same priority, the device with the lowest MAC address will then
 become the root device. (Note that lower numeric values indicate higher priority.)

Range: 0-65535Default: 32768

Bridge Max Age – The maximum time (in seconds) a device can wait without
receiving a configuration message before attempting to reconfigure. All device
ports (except for designated ports) should receive configuration messages at
regular intervals. Any port that ages out STP information (provided in the last
configuration message) becomes the designated port for the attached LAN. If it is
a root port, a new root port is selected from among the device ports attached to the
network. (Range: 6-40 seconds)

· Default: 20

• Minimum: The higher of 6 or [2 x (Hello Time + 1)].

• Maximum: The lower of 40 or [2 x (Forward Delay - 1)]

 Bridge Hello Time – Interval (in seconds) at which the root device transmits a configuration message. (Range: 1-10 seconds)

Default: 2Minimum: 1

• Maximum: The lower of 10 or [(Max. Message Age / 2) -1]

Bridge Forwarding Delay – The maximum time (in seconds) this device waits
before changing states (i.e., discarding to learning to forwarding). This delay is
required because every device must receive information about topology changes
before it starts to forward frames. In addition, each port needs time to listen for
conflicting information that would make it return to a discarding state; otherwise,
temporary data loops might result. (Range: 4-30 seconds)

Default: 15

• Minimum: The higher of 4 or [(Max. Message Age / 2) + 1]

Maximum: 30

5 System Configuration

 Link Path Cost – This parameter is used by the STP to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media. (Path cost takes precedence over port priority.)

Range: 1-65535

· Default: Ethernet interface: 19; Wireless interface: 40

Link Port Priority – Defines the priority used for this port in the Spanning Tree
Protocol. If the path cost for all ports on a switch are the same, the port with the
highest priority (i.e., lowest value) will be configured as an active link in the
spanning tree. This makes a port with higher priority less likely to be blocked if the
Spanning Tree Protocol is detecting network loops. Where more than one port is
assigned the highest priority, the port with lowest numeric identifier will be enabled.

Default: 128

· Range: 0-240, in steps of 16

CLI Commands for WDS Settings – To set the role of the access point radio interface, use the **bridge role** command from the CLI wireless interface configuration mode. If the role of the radio interface is set to "Bridge" or "Repeater," the MAC address of the parent node must also be configured using the **bridge-link parent** command. If the role is set to anything other than "Access Point," then you should also configure the MAC addresses of the child nodes using the **bridge-link child** command. To view the current bridge link settings, use the **show bridge link** command.

Enterprise AP(if-wireless g)#bridge role bridge	6-96			
Enterprise AP(if-wireless g)#bridge-link child 2				
00-08-3e-84-bc-6d	6-98			
Enterprise AP(if-wireless g)#bridge-link child 3				
00-08-3e-85-13-f2				
Enterprise AP(if-wireless g) #bridge-link child 4				
00-08-3e-84-79-31				
Enterprise AP(if-wireless g)#bridge-link parent				
00-08-2d-69-3a-51	6-97			
Enterprise AP(if-wireless g) #exit				
Enterprise AP#show bridge link wireless g	6-101			
Interface Wireless G WDS Information				
=======================================				
AP Role: Bridge				
Parent: 00-08-2d-69-3a-51				
Child:				
Child 2: 00-08-3e-84-bc-6d				
Child 3: 00-08-3e-85-13-f2				
Child 3: 00-08-36-85-13-12				
Child 4: 00-08-3e-83-13-12 Child 4: 00-08-3e-84-79-31				
Child 4: 00-08-3e-84-79-31				
Child 4: 00-08-3e-84-79-31 Child 5: 00-00-00-00-00				
Child 4: 00-08-3e-84-79-31 Child 5: 00-00-00-00-00 Child 6: 00-00-00-00-00				
Child 4: 00-08-3e-84-79-31 Child 5: 00-00-00-00-00 Child 6: 00-00-00-00-00 STAs:				

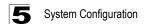
CLI Commands for *STP Settings* – If the role of a radio interface is set to Repeater, Bridge or Root Bridge, STP can be enabled on the access point to maintain a valid network topology. To globally enable STP, use the **bridge stp enable** command from the CLI configuration mode. Then configure the other global STP parameters for the bridge. The path cost and priority for each bridge link can be set using the **bridge-link path-cost** and **bridge-link port-priority** command from the Wireless Interface configuration mode. The path cost and priority can also be set for the Ethernet port from the Ethernet Interface configuration mode. To view the current STP settings, use the **show bridge stp** command.

```
Enterprise AP(config) #bridge stp enable
                                                             6-104
Enterprise AP(config) #bridge stp forwarding-delay 25006-105
Enterprise AP(config) #bridge stp hello-time 500 6-106
Enterprise AP(config) #bridge stp max-age 4000
                                                           6-107
Enterprise AP(config) #bridge stp priority 40000
                                                           6-108
Enterprise AP(config) #interface wireless g
Enterprise AP(if-wireless q) #bridge-link path-cost 2 406-109
Enterprise AP(if-wireless g) #bridge-link port-priority 2 64
   6-110
Enterprise AP(if-wireless g) #exit
Enterprise AP#show bridge stp
                                                            6-111
Bridge MAC : 00:30:F1:F0:9A:9C
Status priority
                      : Disabled
                      : 32768
designated-root : priority = 0, MAC = 00:00:00:00:00:00
root-path-cost : 0
                  : 0
root-Port-no
Hold Time : 0 Seconds
Hello Time : 0 Seconds
Maximum Age : 0 Seconds
Forward Delay : 0 Seconds
bridge Hello Time : 2 Seconds
bridge Maximum Age : 20 Seconds
                           0 Seconds
bridge Forward Delay: 5 Seconds
time-since-top-change: 3168 Seconds
topology-change-count: 0
Enterprise AP#
```


AP Management

The Web, Telnet, and SNMP management interfaces are enabled and open to all IP addresses by default. To provide more security for management access to the access point, specific interfaces can be disabled and management restricted to a single IP address or a limited range of IP addresses.

Once you specify an IP address or range of addresses, access to management interfaces is restricted to the specified addresses. If anyone tries to access a management interface from an unauthorized address, the access point will reject the connection.



UI Management – Enables or disables management access through Telnet, the Web (HTTP), or SNMP interfaces. (Default: Enabled)

Note: Secure Web (HTTPS) connections are not affected by the UI Management or IP Management settings.

IP Management – Restricts management access to Telnet, Web, and SNMP interfaces to specified IP addresses. (Default: Any IP)

- · Any IP: Indicates that any IP address is allowed management access.
- Single IP: Specifies a single IP address that is allowed management access.
- Multiple IP: Specifies an address range as defined by the entered IP address and subnet mask. For example, IP address 192.168.1.6 and subnet mask 255.255.255.0, defines all IP addresses from 192.168.1.1 to 192.168.1.254.

CLI Commands for AP Management features.

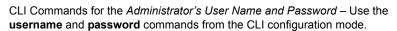
```
Enterprise AP(config) #apmgmtip multiple 192.168.1.50
255.255.255.0 6-20
Enterprise AP(config) #apmgmtui SNMP enable 6-21
```

Administration

Changing the Password

Management access to the web and CLI interface on the access point is controlled through a single user name and password. You can also gain additional access security by using control filters (see "Filter Control" on page 5-17).

To protect access to the management interface, you need to configure an Administrator's user name and password as soon as possible. If the user name and password are not configured, then anyone having access to the access point may be able to compromise access point and network security. Once a new Administrator has been configured, you can delete the default "admin" user name from the system.


Note: Pressing the Reset button on the back of the access point for more than five seconds resets the user name and password to the factory defaults. For this reason, we recommend that you protect the access point from physical access by unauthorized persons.

Username – The name of the user. The default name is "admin." (Length: 3-16 characters, case sensitive)

New Password – The password for management access. (Length: 3-16 characters, case sensitive)

Confirm New Password – Enter the password again for verification.

Enterprise	AP(config)#username	bob	6-15
Enterprise	AP(config)#password	admin	6-15
Enterprise	AP#		

Upgrading Firmware

You can upgrade new access point software from a local file on the management workstation, or from an FTP or TFTP server. New software may be provided periodically from your distributor.

After upgrading new software, you must reboot the access point to implement the new code. Until a reboot occurs, the access point will continue to run the software it was using before the upgrade started. Also note that new software that is incompatible with the current configuration automatically restores the access point to the factory default settings when first activated after a reboot.

Firmware Upgrade				ш	Home 🕏
Current version v4.3.2.0b0	1				
Local					
New firmware file	Bro	wse			
Start Upgrade					
CFTP © TFTP					
New firmware file IP Address					
Start Upgrade It may take s	everal minutes to	upgrade the firm	iware please i	wait	
Restore Factory Settings	Restore				
Reboot Access Point	Reboot				
			/		
				Apply) (C	ancel) (H

Before upgrading new software, verify that the access point is connected to the network and has been configured with a compatible IP address and subnet mask.

If you need to download from an FTP or TFTP server, take the following additional steps:

- Obtain the IP address of the FTP or TFTP server where the access point software is stored
- If upgrading from an FTP server, be sure that you have an account configured on the server with a user name and password.
- If VLANs are configured on the access point, determine the VLAN ID with which
 the FTP or TFTP server is associated, and then configure the management station,
 or the network port to which it is attached, with the same VLAN ID. If you are

managing the access point from a wireless client, the VLAN ID for the wireless client must be configured on a RADIUS server.

Current version – Version number of runtime code.

Firmware Upgrade Local – Downloads an operation code image file from the web management station to the access point using HTTP. Use the Browse button to locate the image file locally on the management station and click Start Upgrade to proceed.

New firmware file: Specifies the name of the code file on the server. The new firmware file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names is 32 characters for files on the access point. (Valid characters: A-Z, a-z, 0-9, ".", "-", "_")

Firmware Upgrade Remote – Downloads an operation code image file from a specified remote FTP or TFTP server. After filling in the following fields, click Start Upgrade to proceed.

- New firmware file: Specifies the name of the code file on the server. The new firmware file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names on the FTP/TFTP server is 255 characters or 32 characters for files on the access point. (Valid characters: A-Z, a-z, 0-9, ".", "-", "_")
- IP Address: IP address or host name of FTP or TFTP server.
- · Username: The user ID used for login on an FTP server.
- · Password: The password used for login on an FTP server.

Restore Factory Settings – Click the Restore button to reset the configuration settings for the access point to the factory defaults and reboot the system. Note that all user configured information will be lost. You will have to re-enter the default user name (admin) to re-gain management access to this device.

Reboot Access Point - Click the Reset button to reboot the system.

Note: If you have upgraded system software, then you must reboot the access point to implement the new operation code. New software that is incompatible with the current configuration automatically restores the access point to default values when first activated after a reboot.

CLI Commands for *Downloading Software from a TFTP Server* – Use the **copy tftp file** command from the Exec mode and then specify the file type, name, and IP address of the TFTP server. When the download is complete, the **dir** command can be used to check that the new file is present in the access point file system. To run the new software, use the **reset board** command to reboot the access point.

Enterprise AP#copy tftp file 1. Application image 2. Config file 3. Boot block image Select the type of download< TFTP Source file name:img.bi TFTP Server IP:192.168.2.29	6-55		
Enterprise AP#dir			6-57
File Name	Type	File Size	
dflt-img.bin	2	1319939	
img.bin	2	1629577	
syscfg	5	17776	
syscfg_bak	5	17776	
262144 byte(s) available			
Enterprise AP#reset board Reboot system now? <y n="">: y</y>	6-10		

System Log

The access point can be configured to send event and error messages to a System Log Server. The system clock can also be synchronized with a time server, so that all the messages sent to the Syslog server are stamped with the correct time and date

Enabling System Logging

The access point supports a logging process that can control error messages saved to memory or sent to a Syslog server. The logged messages serve as a valuable tool for isolating access point and network problems.

System Log Setup – Enables the logging of error messages. (Default: Disable)

Server (1-4) – Enables the sending of log messages to a Syslog server host. Up to four Syslog servers are supported on the access point. (Default: Disable)

Server Name/IP – The IP address or name of a Syslog server. (Default: 0.0.0.0)

UDP Port – The UDP port used by a Syslog server. (Range: 514 or 11024-65535; Default: 514)

Logging Console – Enables the logging of error messages to the console. (Default: Disable)

Logging Level – Sets the minimum severity level for event logging. (Default: Informational)

The system allows you to limit the messages that are logged by specifying a minimum severity level. The following table lists the error message levels from the most severe (Emergency) to least severe (Debug). The message levels that are logged include the specified minimum level up to the Emergency level.

Error Level	Description
Emergency	System unusable
Alerts	Immediate action needed
Critical	Critical conditions (e.g., memory allocation, or free memory error - resource exhausted)
Error	Error conditions (e.g., invalid input, default used)
Warning	Warning conditions (e.g., return false, unexpected return)
Notice	Normal but significant condition, such as cold start
Informational	Informational messages only
Debug	Debugging messages

Note: The access point error log can be viewed using the Event Logs window in the Status section (page 5-91). The Event Logs window displays the last 128 messages logged in chronological order, from the newest to the oldest. Log messages saved in the access point's memory are erased when the device is rebooted.

Logging Facility Type – Sets the facility type for remote logging of syslog messages. The command specifies the facility type tag sent in syslog messages. (See RFC 3164.) This type has no effect on the kind of messages reported by the switch. However, it may be used by the syslog server to sort messages or to store messages in the corresponding database. (Range: 16-23; Default: 16)

CLI Commands for *System Logging* – To enable logging on the access point, use the **logging on** command from the global configuration mode. The **logging level** command sets the minimum level of message to log. Use the **logging console** command to enable logging to the console. Use the **logging host** command to specify up to four Syslog servers. The CLI also allows the **logging facility-type** command to set the facility-type number to use on the Syslog server. To view the current logging settings, use the **show logging** command.

```
Enterprise AP(config) #logging on
                                                   6-28
Enterprise AP(config) #logging level alert
                                                   6-29
Enterprise AP(config) #logging console
                                                   6-29
Enterprise AP(config) #logging host 1 IP 10.1.0.3 514 6-28
Enterprise AP(config) #logging host 1 Port 514
                                                  6-28
Enterprise AP(config) #logging facility-type 19
                                                  6-30
Enterprise AP(config)#exit
Enterprise AP#show logging
                                                   6 - 31
Logging Information
______
Syslog State
                         : Enabled
Logging Console State
                        : Enabled
Logging Level
                        : Alert
Logging Facility Type : 19
Servers
  1: 10.1.0.3, UDP Port: 514, State: Enabled
  2: 0.0.0.0, UDP Port: 514, State: Disabled
  3: 0.0.0.0, UDP Port: 514, State: Disabled
  4: 0.0.0.0, UDP Port: 514, State: Disabled
Enterprise AP#
```

Configuring SNTP

Simple Network Time Protocol (SNTP) allows the access point to set its internal clock based on periodic updates from a time server (SNTP or NTP). Maintaining an accurate time on the access point enables the system log to record meaningful dates and times for event entries. If the clock is not set, the access point will only record the time from the factory default set at the last bootup.

The access point acts as an SNTP client, periodically sending time synchronization requests to specific time servers. You can configure up to two time server IP addresses. The access point will attempt to poll each server in the configured sequence.

SNTP Server – Configures the access point to operate as an SNTP client. When enabled, at least one time server IP address must be specified.

- Primary Server: The IP address of an SNTP or NTP time server that the access point attempts to poll for a time update.
- Secondary Server: The IP address of a secondary SNTP or NTP time server. The
 access point first attempts to update the time from the primary server; if this fails it
 attempts an update from the secondary server.

Note: The access point also allows you to disable SNTP and set the system clock manually.

Set Time Zone – SNTP uses Coordinated Universal Time (or UTC, formerly Greenwich Mean Time, or GMT) based on the time at the Earth's prime meridian, zero degrees longitude. To display a time corresponding to your local time, you must indicate the number of hours your time zone is located before (east) or after (west) UTC.

Enable Daylight Saving – The access point provides a way to automatically adjust the system clock for Daylight Savings Time changes. To use this feature you must define the month and date to begin and to end the change from standard time. During this period the system clock is set back by one hour.

CLI Commands for *SNTP* – To enable SNTP support on the access point, from the global configuration mode specify SNTP server IP addresses using the **sntp-server ip** command, then use the **sntp-server enable** command to enable the service. Use the **sntp-server timezone** command to set the time zone for your location, and the **sntp-server daylight-saving** command to set daylight savings. To view the current SNTP settings, use the **show sntp** command.

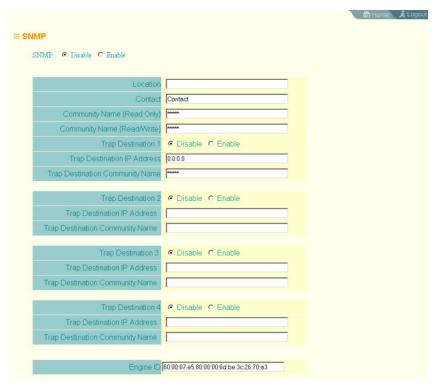
```
Enterprise AP(config) #sntp-server ip 1 10.1.0.19
                                                6-33
Enterprise AP(config) #sntp-server enable
                                                 6-33
Enterprise AP(config) #sntp-server timezone +8
                                                6-35
Enterprise AP(config) #sntp-server daylight-saving
                                                6-35
Enter Daylight saving from which month<1-12>: 3
and which day<1-31>: 31
Enter Daylight saving end to which month<1-12>: 10
and which day<1-31>: 31
Enterprise AP(config)#exit
Enterprise AP#show sntp
                                                 6-36
SNTP Information
Service State
                  : Enabled
SNTP (server 1) IP : 10.1.10.19
SNTP (server 2) IP : 192.43.244.18
                  : 19 : 35, Oct 10th, 2003
Current Time
Time Zone
                  : +8 (TAIPEI, BEIJING)
Daylight Saving : Enabled, from Mar, 31st to Oct, 31st
______
Enterprise AP#
```


CLI Commands for the $System\ Clock$ – The following example shows how to manually set the system time when SNTP server support is disabled on the access point.

```
Enterprise AP(config) #no sntp-server enable 6-33
Enterprise AP(config) #sntp-server date-time 6-34
Enter Year<1970-2100>: 2003
Enter Month<1-12>: 10
Enter Day<1-31>: 10
Enter Hour<0-23>: 18
Enter Min<0-59>: 35
Enterprise AP(config) #
```

SNMP

Simple Network Management Protocol (SNMP) is a communication protocol designed specifically for managing devices on a network. Equipment commonly managed with SNMP includes switches, routers and host computers. SNMP is typically used to configure these devices for proper operation in a network environment, as well as to monitor them to evaluate performance or detect potential problems.


Managed devices supporting SNMP contain software, which runs locally on the device and is referred to as an agent. A defined set of variables, known as managed objects, is maintained by the SNMP agent and used to manage the device. These objects are defined in a Management Information Base (MIB) that provides a standard presentation of the information controlled by the agent. SNMP defines both the format of the MIB specifications and the protocol used to access this information over the network

The access point includes an onboard agent that supports SNMP versions 1, 2c, and 3 clients. This agent continuously monitors the status of the access point, as well as the traffic passing to and from wireless clients. A network management station can access this information using SNMP management software that is compliant with MIB II. To implement SNMP management, the access point must first have an IP address and subnet mask, configured either manually or dynamically. Access to the onboard agent using SNMP v1 and v2c is controlled by community strings. To communicate with the access point, the management station must first submit a valid community string for authentication.

Access to the access point using SNMP v3 provides additional security features that cover message integrity, authentication, and encryption; as well as controlling notifications that are sent to specified user targets.

Configuring SNMP and Trap Message Parameters

The access point SNMP agent must be enabled to function (for versions 1, 2c, and 3 clients). Management access using SNMP v1 and v2c also requires community strings to be configured for authentication. Trap notifications can be enabled and sent to up to four management stations.

SNMP – Enables or disables SNMP management access and also enables the access point to send SNMP traps (notifications). (Default: Disable)

Location – A text string that describes the system location. (Maximum length: 255 characters)

Contact – A text string that describes the system contact. (Maximum length: 255 characters)

Community Name (Read Only) – Defines the SNMP community access string that has read-only access. Authorized management stations are only able to retrieve MIB objects. (Maximum length: 23 characters, case sensitive; Default: public)

Community Name (Read/Write) – Defines the SNMP community access string that has read/write access. Authorized management stations are able to both retrieve and modify MIB objects. (Maximum length: 23 characters, case sensitive; Default: private)

Trap Destination (1 to 4) – Enables recipients (up to four) of SNMP notifications.

- Trap Destination IP Address Specifies the recipient of SNMP notifications. Enter the IP address or the host name. (Host Name: 1 to 63 characters, case sensitive)
- Trap Destination Community Name The community string sent with the notification operation. (Maximum length: 23 characters, case sensitive; Default: public)

Engine ID – Sets the engine identifier for the SNMPv3 agent that resides on the access point. This engine protects against message replay, delay, and redirection. The engine ID is also used in combination with user passwords to generate the security keys for authenticating and encrypting SNMPv3 packets. A default engine ID is automatically generated that is unique to the access point. (Range: 10 to 64 hexadecimal characters)

Note: If the local engine ID is deleted or changed, all SNMP users will be cleared. All existing users will need to be re-configured. If you want to change the default engine ID, change it first before configuring other SNMP v3 parameters.

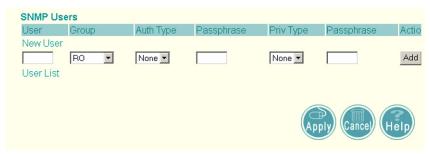
sysSystemUp Enable	✓ dot1xMacAddrAuthFail Enable
sysSystemDown Enable	✓ dot1xAuthNotInitiated Enable
▼ sysRadiusServerChanged Enable	✓ dot1xAuthSuccess Enable
▼ sysConfigFileVersionChanged Enable	▼ dot1xAuthFail Enable
dot11StationAssociation Enable	✓ localMacAddrAuthSuccess Enable
dot11StationReAssociation Enable	✓ localMacAddrAuthFail Enable
dot11StationAuthentication Enable	✓ dot1xSuppAuthenticated Enable
▼ dot11StationRequestFail Enable	▼ iappStationRoamedFrom Enable
▼ dot11InterfaceAFail Enable	▼ iappStationRoamedTo Enable
▼ dot11InterfaceGFail Enable	▼ iappContextDataSent Enable
dot1xMacAddrAuthSuccess Enable	✓ sntpServerFail Enable
wirelessExternalAntenna Enable	✓ dot11StationDisassociate Enable
dot11StationDeautheticate Enable	
Enable All Traps	Disable All Traps

Trap Configuration – Allows selection of specific SNMP notifications to send. The following items are available:

- sysSystemUp The access point is up and running.
- sysSystemDown The access point is about to shutdown and reboot.
- sysRadiusServerChanged The access point has changed from the primary RADIUS server to the secondary, or from the secondary to the primary.
- sysConfigFileVersionChanged The access point's configuration file has been changed.
- dot11StationAssociation A client station has successfully associated with the access point.
- dot11StationReAssociation A client station has successfully re-associated with the access point.
- dot11StationAuthentication A client station has been successfully authenticated.
- dot11StationRequestFail A client station has failed association, re-association, or authentication.
- dot11InterfaceBFail The 802.11b interface has failed.
- dot1xMacAddrAuthSuccess A client station has successfully authenticated its MAC address with the RADIUS server.
- dot1xMacAddrAuthFail A client station has failed MAC address authentication with the RADIUS server.
- dot1xAuthNotInitiated A client station did not initiate 802.1X authentication.
- dot1xAuthSuccess A 802.1X client station has been successfully authenticated by the RADIUS server.
- dot1xAuthFail A 802.1X client station has failed RADIUS authentication.
- dot1xSuppAuthenticated A supplicant station has been successfully authenticated by the RADIUS server
- localMacAddrAuthSuccess A client station has successfully authenticated its MAC address with the local database on the access point.
- localMacAddrAuthFail A client station has failed authentication with the local MAC address database on the access point.
- iappStationRoamedFrom A client station has roamed from another access point (identified by its IP address).
- iappStationRoamedTo A client station has roamed to another access point (identified by its IP address).
- iappContextDataSent A client station's Context Data has been sent to another access point with which the station has associated.
- sntpServerFail The access point has failed to set the time from the configured SNTP server.
- wirelessExternalAntenna An external antenna has been enabled.
- dot11WirelessStationDeauthenticate A client station has de-authenticated from the network.
- dot11StationDisassociate A client station no longer associates with the network.

- dot11StationAuthenticateFail A client station has tried and failed to authenticate to the network.
- Enable All Traps Click the button to enable all the available traps.
- Disable All Traps Click the button to disable all the available traps.

CLI Commands for SNMP and Trap Configuration — Use the snmp-server enable server command from the global configuration mode to enable the SNMP agent. Use the snmp-server location and snmp-server contact commands to indicate the physical location of the access point and define a system contact. To set the read-only and read/write community names, use the snmp-server community command. Use the snmp-server host command to define a trap receiver host and the snmp-server trap command to enable or disable specific traps.


```
Enterprise AP(config) #snmp-server enable server 6-41
Enterprise AP(config) #snmp-server community alpha rw 6-40
Enterprise AP(config) #snmp-server community beta ro
Enterprise AP(config) #snmp-server location WC-19 6-41
Enterprise AP(config) #snmp-server contact Paul 6-40
Enterprise AP(config) #snmp-server host 192.168.1.9 alpha6-42
Enterprise AP(config) #snmp-server trap dot11StationAssociation 6-43
Enterprise AP(config) #
```

To view the current SNMP settings, use the **show snmp** command.

```
Enterprise AP#show snmp
                                              6-53
SNMP Information
______
Service State
                         : Enable
Community (ro)
                         : ****
                         : ****
Community (rw)
Location
                         : WC-19
Contact
                          : Paul
EngineId :80:00:07:e5:80:00:00:2e:62:00:00:00:18
EngineBoots:1
Trap Destinations:
       192.168.1.9, Community: ****, State: Enabled
            0.0.0.0, Community: ****, State: Disabled
  3:
            0.0.0.0, Community: ****, State: Disabled
             0.0.0.0, Community: ****, State: Disabled
  4:
dot11InterfaceAGFail Enabled dot11InterfaceBFail Enabled
dot11StationAssociation Enabled dot11StationAuthentication
 Enabled
dot11StationReAssociation Enabled dot11StationRequestFail
 Enabled
dot1xAuthFail Enabled dot1xAuthNotInitiated Enabled dot1xAuthSuccess Enabled dot1xMacAddrAuthFail Enabled
dot1xMacAddrAuthSuccess Enabled
                                 iappContextDataSent
Enabled
iappStationRoamedFrom Enabled iappStationRoamedTo
Enabled
localMacAddrAuthFail Enabled localMacAddrAuthSuccess
 Enabled
Enabled
wirelessExternalAntenna Enabled dot11InterfaceAFail
Enabled
dot11InterfaceGFail Enabled
pppLogonFail Enabled sntpServerFail Enabled
configFileVersionChanged Enabled radiusServerChanged
Enabled
systemDown Enabled
                                systemUp Enabled
_____
Enterprise AP#
```

Configuring SNMPv3 Users

The access point allows up to 10 SNMP v3 users to be configured. Each user must be defined by a unique name, assigned to one of three pre-defined security groups, and configured with specific authentication and encryption settings.

User – The SNMPv3 user name. (32 characters maximum)

Group – The SNMPv3 group name. (Options: RO, RWAuth, or RWPriv; Default: RO)

- RO Read-only access.
- RWAuth Read/write access with user authentication.
- RWPriv Read/write access with both user authentication and data encryption.

Auth Type – The authentication type used for the SNMP user; either MD5 or none. When MD5 is selected, enter a password in the corresponding Passphrase field.

Priv Type – The data encryption type used for the SNMP user; either DES or none. When DES is selected, enter a key in the corresponding Passphrase field.

Passphrase – The password or key associated with the authentication and privacy settings. A minimum of eight plain text characters is required.

Action – Click the Add button to add a new user to the list. Click the edit button to change details of an existing user. Click the Del button to remove a user from the list.

Note: Users must be assigned to groups that have the same security levels. For example, a user who has "Auth Type" and "Priv Type" configured to MD5 and DES respectively (that it, uses both authentication and data encryption) must be assigned to the RWPriv group. If this same user were instead assigned to the read-only (RO) group, the user would not be able to access the database.

CLI Commands for *Configuring SNMPv3 Users* — Use the **snmp-server engine-id** command to define the SNMP v3 engine before assigning users to groups. Use the **snmp-server user** command to assign users to one of the three groups and set the appropriate authentication and encryption types to be used. To view the current SNMP v3 engine ID, use the **show snmp** command. To view SNMP users and group settings, use the **show snmp users** or **show snmp group-assignments** commands.

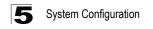
```
Enterprise AP(config) #snmp-server engine-id 1a:2b:3c:4d:00:ff
6-45
Enterprise AP(config) #snmp-server user
                                              6-45
User Name<1-32> :chris
Group Name<1-32> :RWPriv
Authtype (md5, <cr>none):md5
Passphrase<8-32>:a good secret
Privacy(des, <cr>none) :des
Passphrase<8-32>:a very good secret
Enterprise AP(config)#exit
Enterprise AP#show snmp users
                                              6-50
______
UserName :chris
GroupName
          :RWPriv
AuthType :MD5
  Passphrase: ***********
PrivType
          :DES
  Passphrase: ***********
_____
                                              6-50
Enterprise AP#show snmp group-assignments
GroupName :RWPriv
UserName
          :chris
Enterprise AP#
```

5

Configuring SNMPv3 Trap Filters

SNMP v3 users can be configured to receive notification messages from the access point. An SNMP Target ID is created that specifies the SNMP v3 user, IP address, and UDP port. A user-defined notification filter can be created so that specific notifications can be prevented from being sent to particular targets.

The access point allows up to 10 notification filters to be created. Each filter can be defined by up to 20 MIB subtree ID entries.


To configure a new notification filter, click the New button. A new page opens to configure the filter (see below). To edit an existing filter, select the radio button next to the entry in the table and then click the Edit button. To delete a filter, select the radio button next to the entry in the table and then click the Delete button.

When you click on the New button in the SNMP Trap Filters page, a new page opens where the filter parameters are configured. Define a filter name and subtree ID to be filtered. Select the filter type, include or exclude, from the drop-down list. Click Apply to create the filter.

To add more subtree IDs to the filter, return to the SNMP Trap Filters page and click the Edit button. In the Edit page, click the New button to access the Add SNMP Notification Subtree page and configure a new subtree ID to be filtered.

Note: Only the New Filter page allows the Filter ID to be configured.

Filter ID – A user-defined name that identifies the filter. (Maximum length: 32 characters)

Subtree OID – Specifies MIB subtree to be filtered. The MIB subtree must be defined in the form ".1.3.6.1" and always start with a ".".

Filter Type – Indicates if the filter is to "include" or "exclude" the MIB subtree objects from the filter. Note that MIB objects included in the filter are not sent to the receiving target and objects excluded are sent. By default all traps are sent, so you can first use an "include" filter entry for all trap objects. Then use "exclude" entries for the required trap objects to send to the target. Note that the filter entries are applied in the sequence that they are defined.

CLI Commands for *Configuring SNMPv3 Trap Filters* – To create a notification filter, use the **snmp-server filter** command from the CLI configuration mode. Use the command more than once with the same filter ID to build a filter that includes or excludes multiple MIB objects. To view the current SNMP filters, use the **show snmp filter** command from the CLI Exec mode.

Configuring SNMPv3 Targets

An SNMP v3 notification Target ID is specified by the SNMP v3 user, IP address, and UDP port. A user-defined filter can also be assigned to specific targets to limit the notifications received to specific MIB objects. (Note that the filter must first be configured. see "Configuring SNMPv3 Trap Filters" on page 5-45)

To configure a new notification receiver target, click the New button. A new page opens to configure the settings (see below). To edit an existing target, select the radio button next to the entry in the table and then click the Edit button. To delete targets, select the radio button next to the entry in the table and then click the Delete button.

When you click on the New or Edit button in the SNMP Targets page, a new page opens where the target parameters are configured. Define the parameters and select a filter, if required. Note that the SNMP v3 user name must first be defined (see "Configuring SNMPv3 Users" on page 5-43). Click Apply.

Note: The Target ID cannot be changed in the Edit Target page. Only the New Target page allows the Target ID to be configured.

Ⅲ SNMP Target Ad	dresses	前 Home 人 Logout
Target ID	christraps	
IP Address	192.168.1.1	
UDP Port	162	
SNMP User	chris	
Option	nal Filter Assignment ▼	Apply Cance) Back Help

Target ID – A user-defined name that identifies a receiver of notifications. The access point supports up to 10 target IDs. (Maximum length: 32 characters)

IP Address – Specifies the IP address of the receiving management station.

UDP Port – The UDP port that is used on the receiving management station for notification messages.

SNMP User – The defined SNMP v3 user that is to receive notification messages.

Assigned Filter – The name of a user-defined notification filter that is applied to the target.

CLI Commands for *Configuring SNMPv3 Targets* – To create a notification target, use the **snmp-server targets** command from the CLI configuration mode. To assign a filter to a target, use the **snmp-server filter-assignment** command. To view the current SNMP targets, use the **show snmp target** command from the CLI Exec mode. To view filter assignment to targets, use the **show snmp filter-assignments** command.

6-47

Enterprise AP(config)#snmp-server targets mytraps
192.168.1.33 chris

Enterprise AP(config) #snmp-server filter-assignment

mytraps trapfilter 6-49

Enterprise AP(config)#exit

Enterprise AP#show snmp target 6-51

Host ID : mytraps
User : chris

IP Address : 192.168.1.33

UDP Port : 162

Enterprise AP#show snmp filter-assignments 6-52

HostID FilterID

mytraps trapfilter

Enterprise AP#

Radio Interface

The IEEE 802.11b/g interface includes configuration options for radio signal characteristics and wireless security features.

The IEEE 802.11g standard operates within the 2.4 GHz band at up to 54 Mbps. Also note that because the IEEE 802.11g standard is an extension of the IEEE 802.11b standard, it allows clients with 802.11b wireless network cards to associate to an 802.11g access point.

The access point can operate in three modes, IEEE 802.11b only, 802.11g only, or a mixed 802.11b/g mode. Also note that 802.11g is backward compatible with 802.11b.

Each radio supports up to eight virtual access point (VAP) interfaces numbered 0 to 7. Each VAP functions as a separate access point, and can be configured with its own Service Set Identification (SSID) and security settings. However, most radio signal parameters apply to all eight VAP interfaces.

The VAPs function similar to a VLAN, with each VAP mapped to its own VLAN ID. Traffic to specific VAPs can be segregated based on user groups or application traffic. Each VAP can have up to 64 wireless clients, whereby the clients associate with these VAPs the same as they would with a physical access point.

Note: The radio channel settings for the access point are limited by local regulations, which determine the number of channels that are available. Refer to "General Specifications" on page C-1 for additional information on the maximum number channels available.

Note: You must first enable VAP interface 0 before the other interfaces can be enabled.

Radio Channel : 1 🔻
Auto Channel Select : C Disable
Transmit Power 100% •
Maximum Station Data Rate 54 ▼ Mbps
Maximum Association Client : 64
Antenna ID: id=0x0000, module=Default Antenna
Antenna Control Method : Diversity
Antenna Location : Indoor 🔻
MIC Mode: C Hardware C Software
Super G:
Radio Mode : ◎ b & g mixed mode ○ g only mode ○ b only mode
Preamble Length: © Long C Short
Beacon Interval (20-1000) 100 TUs
Data Beacon Rate (DTIM) (1-255) 1 Beacons
Fragmentation Threshold (256-2346) 2346 Bytes
RTS Threshold (0-2347) 2347 Bytes

Radio Channel – The radio channel that the access point uses to communicate with wireless clients. When multiple access points are deployed in the same area, set the channel on neighboring access points at least five channels apart to avoid interference with each other. For example, in the United States you can deploy up to three access points in the same area (e.g., channels 1, 6, 11). Also note that the channel for wireless clients is automatically set to the same as that used by the access point to which it is linked. (Range: 1-11; Default: 1)

Auto Channel Select – Enables the access point to automatically select an unoccupied radio channel. (Default: Enabled)

Transmit Power – Adjusts the power of the radio signals transmitted from the access point. The higher the transmission power, the farther the transmission range. Power selection is not just a trade off between coverage area and maximum supported clients. You also have to ensure that high-power signals do not interfere with the operation of other radio devices in the service area. (Options: 100%, 50%, 25%, 12%, minimum; Default: 100%)

Note: When operating the access point using 5 GHz channels in a European Community country, the end user and installer are obligated to operate the device in accordance with European regulatory requirements for Transmit Power Control (TPC).

54

54

48

36

18

12

Maximum Station Data Rate - The maximum data rate at which the access point transmits unicast packets on the wireless interface. The maximum transmission distance is affected by the data rate. The lower the data rate, the longer the transmission distance. (Default: 54 Mbps)

Maximum Associated Clients - Sets the maximum number of clients that can 24 be associated with a VAP interface at the same time. (Range: 1-64 per VAP interface: Default: 64)

11 Antenna ID – Selects the antenna to be used by the access point; either the 19 integrated diversity antennas (the "Default Antenna") or an optional external 6 5.5 antenna. The optional external antennas (if any) that are certified for use with the access point are listed in the drop-down menu. Selecting the correct |2 antenna ID ensures that the access point's radio transmissions are within regulatory power limits for the country of operation. (Default: Default Antenna)

Note: The Antenna ID must be selected in conjunction with the Antenna Control Method to configure proper use of any of the antenna options. This access point does not support optional external antennas.

Antenna Control Method - Selects the use of both fixed antennas operating in diversity mode or a single antenna. (Default: Diversity)

- Diversity: The radio uses both antennas in a diversity system. Select this method when the Antenna ID is set to "Default Antenna" to use the access point's integrated antennas.
- Right: The radio only uses the antenna on the right side (the side closest to the access point LEDs). Select this method when using an optional external antenna that is connected to the right antenna connector.
- Left: The radio only uses the antenna on the left side (the side farthest from the access point LEDs). Select this method when using an optional external antenna that is connected to the left antenna connector.

Antenna Location – Selects the mounting location of the antenna in use; either "Indoor" or "Outdoor." Selecting the correct location ensures that the access point only uses radio channels that are permitted in the country of operation. (Default: Indoor)

MIC Mode - The Michael Integrity Check (MIC) is part of the Temporal Key Integrity Protocol (TKIP) encryption used in Wi-Fi Protected Access (WPA) security. The MIC calculation is performed in the access point for each transmitted packet and this can impact throughput and performance. The access point supports a choice of software or hardware MIC calculation. The performance of the access point can be improved by selecting the best method for the specific deployment. (Default: Software)

- Hardware: Provides best performance when the number of supported clients is less than 27.
- Software: Provides the best performance for a large number of clients on one radio interface. Throughput may be reduced when the 802.11q interface is supporting a high number of clients simultaneously.

Super G – The Atheros proprietary Super G performance enhancements are supported by the access point. These enhancements include bursting, compression, fast frames and dynamic turbo. Maximum throughput ranges between 40 to 60 Mbps for connections to Atheros-compatible clients. (Default: Disabled)

Radio Mode – Selects the operating mode for the 802.11g wireless interface. (Default: 802.11b+g)

- 802.11b+g: Both 802.11b and 802.11g clients can communicate with the access point (up to 54 Mbps).
- 802.11b only: Both 802.11b and 802.11g clients can communicate with the access point, but 802.11g clients can only transfer data at 802.11b standard rates (up to 11 Mbps).
- 802.11g only: Only 802.11g clients can communicate with the access point (up to 54 Mbps).

Preamble – Sets the length of the signal preamble that is used at the start of a data transmission. (Default: Long)

- Long: Sets the preamble to long (192 microseconds). Using a long preamble ensures the access point can support all 802.11b and 802.11g clients.
- Short or Long: Sets the preamble according to the capability of clients that are
 currently associated. Uses a short preamble (96 microseconds) if all associated
 clients can support it, otherwise a long preamble is used. The access point can
 increase data throughput when using a short preamble, but will only use a short
 preamble if it determines that all associated clients support it.

Beacon Interval – The rate at which beacon signals are transmitted from the access point. The beacon signals allow wireless clients to maintain contact with the access point. They may also carry power-management information. (Range: 20-1000 TUs; Default: 100 TUs)

Data Beacon Rate – The rate at which stations in sleep mode must wake up to receive broadcast/multicast transmissions.

Known also as the Delivery Traffic Indication Map (DTIM) interval, it indicates how often the MAC layer forwards broadcast/multicast traffic, which is necessary to wake up stations that are using Power Save mode. The default value of 2 indicates that the access point will save all broadcast/multicast frames for the Basic Service Set (BSS) and forward them after every second beacon. Using smaller DTIM intervals delivers broadcast/multicast frames in a more timely manner, causing stations in Power Save mode to wake up more often and drain power faster. Using higher DTIM values reduces the power used by stations in Power Save mode, but delays the transmission of broadcast/multicast frames.

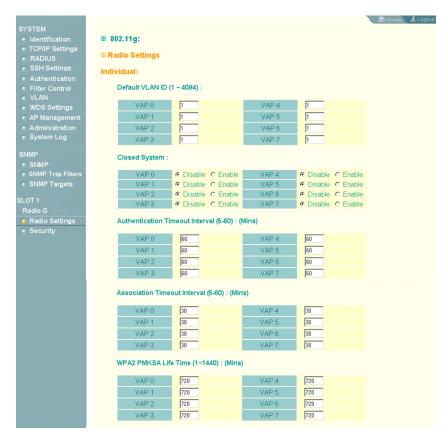
(Range: 1-255 beacons; Default: 1 beacon)

Multicast Data Rate – The maximum data rate at which the access point transmits multicast and broadcast packets on the wireless interface. (Options: 24, 12, 6 Mbps; Default: 6 Mbps)

Fragmentation Length – Configures the minimum packet size that can be fragmented when passing through the access point. Fragmentation of the PDUs (Package Data Unit) can increase the reliability of transmissions because it increases the probability of a successful transmission due to smaller frame size. If there is significant interference present, or collisions due to high network utilization, try setting the fragment size to send smaller fragments. This will speed up the retransmission of smaller frames. However, it is more efficient to set the fragment size larger if very little or no interference is present because it requires overhead to send multiple frames. (Range: 256-2346 bytes; Default: 2346 bytes)

RTS Threshold – Sets the packet size threshold at which a Request to Send (RTS) signal must be sent to a receiving station prior to the sending station starting communications. The access point sends RTS frames to a receiving station to negotiate the sending of a data frame. After receiving an RTS frame, the station sends a CTS (clear to send) frame to notify the sending station that it can start sending data.

If the RTS threshold is set to 0, the access point always sends RTS signals. If set to 2347, the access point never sends RTS signals. If set to any other value, and the packet size equals or exceeds the RTS threshold, the RTS/CTS (Request to Send / Clear to Send) mechanism will be enabled.


The access points contending for the medium may not be aware of each other. The RTS/CTS mechanism can solve this "Hidden Node Problem." (Range: 0-2347 bytes: Default: 2347 bytes)

CLI Commands for *Radio Settings* – From the global configuration mode, enter the **interface wireless g** command to access the 802.11g radio interface. From the 802.11g interface mode, you can access radio settings that apply to all VAP interfaces. Use the **turbo** command to enable this feature before setting the radio channel with the **channel** command. Set any other radio setting as required before enabling the VAP interface (with the **no shutdown** command). To view the current 802.11g radio settings for the VAP interface, use the **show interface wireless g [0~7]** command as shown on 6-94.

```
Enterprise AP(config) #interface wireless g
                                                       6-87
Enter Wireless configuration commands, one per line.
Enterprise AP(if-wireless q) #super-q
                                                       6-103
Enterprise AP(if-wireless g) #channel 42
                                                       6-96
Enterprise AP(if-wireless g) #transmit-power full
                                                       6-96
Enterprise AP(if-wireless g)#speed 9
                                                       6-95
Enterprise AP(if-wireless g) #antenna id 0000
                                                       6-99
Enterprise AP(if-wireless g) #antenna control right
                                                       6-98
Enterprise AP(if-wireless q) #antenna location indoor 6-100
Enterprise AP(if-wireless g) #mic mode hardware
                                                       6-119
Enterprise AP(if-wireless g)#super-g
                                                       7-104
Enterprise AP(if-wireless g) #beacon-interval 150
                                                       6-100
Enterprise AP(if-wireless g) #beacon-interval 150
                                                       6-100
Enterprise AP(if-wireless g) #dtim-period 5
                                                       6-101
Enterprise AP(if-wireless g) #multicast-data-rate 6
Enterprise AP(if-wireless q)#fragmentation-length 512 6-101
Enterprise AP(if-wireless g) #rts-threshold 256
Enterprise AP(if-wireless q)#
```

Configuring VAP Radio Settings

To configure VAP radio settings, select the Radio Settings page.

Default VLAN ID – The VLAN ID assigned to wireless clients associated to the VAP interface that are not assigned to a specific VLAN by RADIUS server configuration. (Default: 1)

Closed System – When enabled, the VAP interface does not include its SSID in beacon messages. Nor does it respond to probe requests from clients that do not include a fixed SSID. (Default: Disable)

Authentication Timeout Interval – The time within which the client should finish authentication before authentication times out. (Range: 5-60 minutes; Default: 60 minutes)

Association Timeout Interval – The idle time interval (when no frames are sent) after which a client is disassociated from the VAP interface. (Range: 5-60 minutes; Default: 30 minutes)

WPA2 PMKSA Life Time – WPA2 provides fast roaming for authenticated clients by retaining keys and other security settings in a cache for each VAP. In this way, when clients roam back into a VAP they had previously been using, re-authentication is not required. When a WPA2 client is first authenticated, it receives a Pairwise Master Key (PMK) that is used to generate the other keys used for unicast data encryption. This key and other client information form a client Security Association (SA) that the VAP holds in a cache. When the lifetime expires, the security association and keys are deleted from the cache. If the client returns to an access point after the association has been deleted, it will require full re-authentication. (Range: 1-1440 minutes; Default: 720 minutes)

CLI Commands for the *Configuring the VAPs* – From the global configuration mode, enter the **interface wireless g** command to access the 802.11b/g radio interface. From the 802.11b/g interface mode, you can access radio settings that apply to all VAP interfaces. To access a specific VAP interface (numbered 0 to 7), use the **vap** command. You can configure a name for each interface using the **description** command. You can also use the **closed-system** command to stop sending the SSID in beacon messages. Set any other VAP parameters and radio setting as required before enabling the VAP interface (with the **no shutdown** command). To view the current 802.11b/g radio settings for the VAP interface, use the **show interface wireless g 0** command as shown on 6-94.

```
Enterprise AP(if-wireless g) #vap 0 6-94
Enterprise AP(if-wireless g: VAP[0]) #description RD-AP#36-103
Enterprise AP(if-wireless g: VAP[0]) #vlan-id 1 6-128
Enterprise AP(if-wireless g: VAP[0]) #closed-system 6-104
Enterprise AP(if-wireless g: VAP[0]) #authentication-timeout-
interval 30 6-105
Enterprise AP(if-wireless g: VAP[0]) #association-timeout-
interval 20
6-105
Enterprise AP(if-wireless g: VAP[0]) #max-association 326-105
Enterprise AP(if-wireless g: VAP[0]) #pmksa-lifetime 9006-120
Enterprise AP(if-wireless g: VAP[0]) #pmksa-lifetime 9006-120
```

Configuring Rogue AP Detection

To configure Rouge AP detection, select the Radio Settings page, and scroll down to the "Rouge AP" section.

Rogue AP – A "rogue AP" is either an access point that is not authorized to participate in the wireless network, or an access point that does not have the correct security configuration. Rogue APs can allow unauthorized access to the network, or fool client stations into mistakenly associating with them and thereby blocking access to network resources.

The access point can be configured to periodically scan all radio channels and find other access points within range. A database of nearby access points is maintained where any rogue APs can be identified. During a scan, Syslog messages (see "Enabling System Logging" on page 5-33) are sent for each access point detected. Rogue access points can be identified by unknown BSSID (MAC address) or SSID configuration.

- AP Detection Enables the periodic scanning for other access points. (Default: Disable)
- AP Scan Interval Sets the time between each rogue AP scan. (Range: 30 -10080 minutes; Default: 720 minutes)
- AP Scan Duration Sets the length of time for each rogue AP scan. A long scan duration time will detect more access points in the area, but causes more disruption to client access. (Range: 100 -1000 milliseconds; Default: 350 milliseconds)
- Rogue AP Authenticate Enables or disables RADIUS authentication. Enabling RADIUS Authentication allows the access point to discover rogue access points. With RADIUS authentication enabled, the access point checks the MAC address/Basic Service Set Identifier (BSSID) of each access point that it finds against a RADIUS server to determine whether the access point is allowed. With RADIUS authentication disabled, the access point can detect its neighboring access points only; it cannot identify whether the access points are allowed or are rogues. If you enable RADIUS authentication, you must configure a RADIUS server for this access point (see "RADIUS" on page 5-7).
- Scan AP Now Starts an immediate rogue AP scan on the radio interface. (Default: Disable)

Note: While the access point scans a channel for rogue APs, wireless clients will not be able to connect to the access point. Therefore, avoid frequent scanning or scans of a long duration unless there is a reason to believe that more intensive scanning is required to find a rogue AP.

CLI Commands for *Rogue AP Detection* – From the global configuration mode, enter the **interface wireless** command to access the 802.11g radio interface. From the wireless interface mode, use the **rogue-ap enable** command to enable rogue AP detection. Set the duration and interval times with the **rogue-ap duration** and **rogue-ap interval** commands. If required, start an immediate scan using the **rogue-ap scan** command. To view the database of detected access points, use the **show rogue-ap** command from the Exec level.

```
Enterprise AP(config)#interface wireless g
                                                  6-87
Enter Wireless configuration commands, one per line.
Enterprise AP(if-wireless g) #rogue-ap enable
configure either syslog or trap or both to receive the roque
APs detected.
Enterprise AP(if-wireless g) #rogue-ap duration 200
                                                  6-110
Enterprise AP(if-wireless g) #roque-ap interval 120
                                                  6-111
Enterprise AP(if-wireless g) #roque-ap scan
                                                  6-111
Enterprise AP(if-wireless g) #roqueApDetect Completed (Radio G)
 : 5 APs detected
rogueAPDetect (Radio G): refreshing ap database now
Enterprise AP(if-wireless q) #exit
Enterprise AP#show roque-ap
                                                  6-112
802.11g Channel: Rogue AP Status
AP Address(BSSID)
                           SSID Channel (MHz) RSSI
______
                       WLAN1AP 11(2462 MHz)
00-04-e2-2a-37-23
                                               17
00-04-e2-2a-37-3d
                           ANY
                                 7(2442 MHz)
                                               42
00-04-e2-2a-37-49
                       WLAN1AP
                                 9(2452 MHz) 42
                       WLAN1AP 1(2412 MHz)
00-90-d1-08-9d-a7
                                               12
00-30-f1-fb-31-f4
                         WLAN
                                  6(2437 MHz)
                                               16
Enterprise AP#
```

Configuring Wi-Fi Multimedia

Wireless networks offer an equal opportunity for all devices to transmit data from any type of application. Although this is acceptable for most applications, multimedia applications (with audio and video) are particularly sensitive to the delay and throughput variations that result from this "equal opportunity" wireless access method. For multimedia applications to run well over a wireless network, a Quality of Service (QoS) mechanism is required to prioritize traffic types and provide an "enhanced opportunity" wireless access method.

The access point implements QoS using the Wi-Fi Multimedia (WMM) standard. Using WMM, the access point is able to prioritize traffic and optimize performance when multiple applications compete for wireless network bandwidth at the same time. WMM employs techniques that are a subset of the developing IEEE 802.11e QoS standard and it enables the access point to inter operate with both WMM-enabled clients and other devices that may lack any WMM functionality.

Access Categories — WMM defines four access categories (ACs): voice, video, best effort, and background. These categories correspond to traffic priority levels and are mapped to IEEE 802.1D priority tags (see Table 5-1). The direct mapping of the four ACs to 802.1D priorities is specifically intended to facilitate inter operability with other wired network QoS policies. While the four ACs are specified for specific types of traffic, WMM allows the priority levels to be configured to match any network-wide QoS policy. WMM also specifies a protocol that access points can use to communicate the configured traffic priority levels to QoS-enabled wireless clients.

Table 5-1. WMM Access Categories				
Access Category	WMM Designation	Description	802.1D Tags	
AC_VO (AC3)	Voice	Highest priority, minimum delay. Time-sensitive data such as VoIP (Voice over IP) calls.	7, 6	
AC_VI (AC2)	Video	High priority, minimum delay. Time-sensitive data such as streaming video.	5, 4	
AC_BE (AC0)	Best Effort	Normal priority, medium delay and throughput. Data only affected by long delays. Data from applications or devices that lack QoS capabilities.	0, 3	
AC_BK (AC1)	Background	Lowest priority. Data with no delay or throughput requirements, such as bulk data transfers.	2, 1	

WMM Operation — WMM uses traffic priority based on the four ACs; Voice, Video, Best Effort, and Background. The higher the AC priority, the higher the probability that data is transmitted.

When the access point forwards traffic, WMM adds data packets to four independent transmit queues, one for each AC, depending on the 802.1D priority tag of the packet. Data packets without a priority tag are always added to the Best Effort AC queue. From the four queues, an internal "virtual" collision resolution mechanism first selects data with the highest priority to be granted a transmit opportunity. Then the same collision resolution mechanism is used externally to determine which device has access to the wireless medium.

For each AC queue, the collision resolution mechanism is dependent on two timing parameters:

- AIFSN (Arbitration Inter-Frame Space Number), a number used to calculate the minimum time between data frames
- · CW (Contention Window), a number used to calculate a random backoff time

After a collision detection, a backoff wait time is calculated. The total wait time is the sum of a minimum wait time (Arbitration Inter-Frame Space, or AIFS) determined from the AIFSN, and a random backoff time calculated from a value selected from zero to the CW. The CW value varies within a configurable range. It starts at CWMin and doubles after every collision up to a maximum value, CWMax. After a successful transmission, the CW value is reset to its CWMin value.

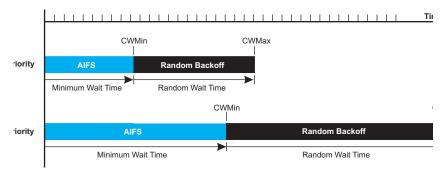


Figure 5-1. WMM Backoff Wait Times

For high-priority traffic, the AIFSN and CW values are smaller. The smaller values equate to less backoff and wait time, and therefore more transmit opportunities.

To configure WMM, select the Radio Settings page, and scroll down to the WMM configuration settings.

WMM : ○ Disable ⊙ Support ○ Required

WMM Acknowledge Policy:

AC0 (Best Effect)	♠ Acknowledge ♠ No Acknowledge ♠ Output
AC1 (Background)	 ♠ Acknowledge ♠ No Acknowledge
AC2 (Video)	 Acknowledge No Acknowledge
AC3 (Voice)	

WMM BSS Parameters :

	AC0 (BestEffort)	AC1 (Background)	AC2 (Video)	AC3 (Voice)
logCwMin	4	4	3	2
logCwMax	10	10	4	3
AIFSN	3	7	2	2
TXOP Limit	0	0	94	47
Admission Control				

WMM AP Parameters :

	AC0 (BestEffort)	AC1 (Background)	AC2 (Video)	AC3 (Voice)
logCwMin	4	4	3	2
logCwMax	6	10	4	3
AIFSN	3	7	1	1
TXOP Limit	0	0	94	47
Admission Control		© Disable © Enable	© Disable © Enable	© Disable C Enable

WMM – Sets the WMM operational mode on the access point. When enabled, the parameters for each AC queue will be employed on the access point and QoS capabilities are advertised to WMM-enabled clients. (Default: Support)

- · Disable: WMM is disabled.
- Support: WMM will be used for any associated device that supports this feature.
 Devices that do not support this feature may still associate with the access point.
- Required: WMM must be supported on any device trying to associated with the access point. Devices that do not support this feature will not be allowed to associate with the access point.

WMM Acknowledge Policy – By default, all wireless data transmissions require the sender to wait for an acknowledgement from the receiver. WMM allows the acknowledgement wait time to be turned off for each Access Category (AC). Although this increases data throughput, it can also result in a high number of errors when traffic levels are heavy. (Default: Acknowledge)

WMM BSS Parameters – These parameters apply to the wireless clients. **WMM AP Parameters** – These parameters apply to the access point.

- logCWMin (Minimum Contention Window) The initial upper limit of the random backoff wait time before wireless medium access can be attempted. The initial wait time is a random value between zero and the CWMin value. Specify the CWMin value in the range 0-15 microseconds. Note that the CWMin value must be equal or less than the CWMax value.
- logCWMax (Maximum Contention Window) The maximum upper limit of the random backoff wait time before wireless medium access can be attempted. The contention window is doubled after each detected collision up to the CWMax value. Specify the CWMax value in the range 0-15 microseconds. Note that the CWMax value must be greater or equal to the CWMin value.
- AIFS (Arbitration Inter-Frame Space) The minimum amount of wait time before the next data transmission attempt. Specify the AIFS value in the range 0-15 microseconds.
- TXOP Limit (Transmit Opportunity Limit) The maximum time an AC transmit queue has access to the wireless medium. When an AC queue is granted a transmit opportunity, it can transmit data for a time up to the TxOpLimit. This data bursting greatly improves the efficiency for high data-rate traffic. Specify a value in the range 0-65535 microseconds.
- Admission Control The admission control mode for the access category. When
 enabled, clients are blocked from using the access category. (Default: Disabled)

Key Type – See "Wired Equivalent Privacy (WEP)" on page 5-71.

CLI Commands for WMM – Enter interface wireless mode and type **wmm required** for clients that want to associate with the access point. The **wmm-acknowledge-policy** command is used to enable or disable a policy for each access category. The **wmmparms** command defines detailed WMM parameters.

```
Enterprise AP(if-wireless g)#wmm required
6-130
Enterprise AP(if-wireless g)#wmm-acknowledge-policy 0 noack
6-130
Enterprise AP(if-wireless g)#wmmparams ap 0 4 6 3 1 1
6-131
```

To view the current 802.11g radio settings for the VAP interface, use the **show interface wireless g 0** command.

```
Enterprise AP#show interface wireless q 0
Wireless Interface Information
_____
-----Identification-----
                          : SMC 802.11g Access Point
Description
SSID
                          : SMC G 0
Turbo Mode
                          : DISABLED
Channel
                          : 36 (AUTO)
Status
                          : DISABLED
                          : 00:12:cf:05:95:0c
MAC Address
-----802.11 Parameters-----
Transmit Power
                          : FULL (16 dBm)
Max Station Data Rate
Multicast Data Rate
                          : 54Mbps
                         : 6Mbps
Fragmentation Threshold : 2346 bytes
                          : 2347 bytes
RTS Threshold
Beacon Interval
                         : 100 TUs
Authentication Timeout Interval: 60 Mins
Association Timeout Interval : 30 Mins
DTIM Interval
                          : 1 beacon
Maximum Association
                         : 64 stations
                          : Software
MIC Mode
Super A
                          : Disabled
VLAN ID
                          : 1
-----Security-----
Closed System
                          : Disabled
                          : WEP
Multicast cipher
                          : TKIP and AES
WPA clients
WPA Key Mgmt Mode
WPA PSK Key Type
                         : PRE SHARED KEY
                          : PASSPHRASE
Encryption
                          : DISABLED
Default Transmit Key
                          : 1
Common Static Keys
                         : Key 1: EMPTY Key 2: EMPTY Key 3: EMPTY Key 4: EMPTY
Authentication Type
                         : OPEN
-----802.1x-----
802.1x
Broadcast Key Refresh Rate : 30 min
Session Key Refresh Rate : 30 min
802.1x Session Timeout Value : 0 min
                         : 30 min
-----Antenna-----
Antenna Control method : Diversity
Antenna ID
                          : 0x0000(Default Antenna)
                         : Indoor
Antenna Location
```


Quality of Servi	ce
WMM Mode	: SUPPORTED
WMM Acknowledge Policy	
ACO(Best Effort)	: Ack
AC1 (Background)	: Acknowledge
AC2(Video)	: Acknowledge
AC3(Voice)	: Acknowledge
WMM BSS Parameters	-
ACO(Best Effort)	: logCwMin: 4 logCwMax: 10
AIFSN: 3	
	Admission Control: No
	TXOP Limit: 0.000 ms
AC1 (Background)	: logCwMin: 4 logCwMax: 10
AIFSN: 7	,,,,,,
	Admission Control: No
	TXOP Limit: 0.000 ms
AC2 (Video)	: logCwMin: 3 logCwMax: 4
AIFSN: 2	. rogemian. c rogemian. r
1111 ON • 2	Admission Control: No
	TXOP Limit: 3.008 ms
AC3(Voice)	: logCwMin: 2 logCwMax: 3
AIFSN: 2	. logowrin. 2 logowrax. 3
1111 511.	Admission Control: No
	TXOP Limit: 1.504 ms
WMM AP Parameters	INOI BIMIC. 1.004 MS
ACO (Best Effort)	: logCwMin: 4 logCwMax: 6
ATFSN: 3	. logowhili. 4 logowhax. 0
7111 014.	Admission Control: No
	TXOP Limit: 0.000 ms
AC1 (Background)	: logCwMin: 4 logCwMax: 10
AIFSN: 7	. logowhill. 4 logowhax. 10
mil on.	Admission Control: No
	TXOP Limit: 0.000 ms
AC2 (Video)	: logCwMin: 3 logCwMax: 4
AIFSN: 1	. logowhili. 3 logowhax. 4
AIPON. I	Admission Control: No
	TXOP Limit: 3.008 ms
AC3(Voice)	: logCwMin: 2 logCwMax: 3
AIFSN: 1	. logcwmin. 2 logcwmax. 3
ATEON. I	Admission Control: No
	TXOP Limit: 1.504 ms
Enterprise AP#	==
THICETATISE WE #	

Security

The access point is configured by default as an "open system," which broadcasts a beacon signal including the configured SSID. Wireless clients with an SSID setting of "any" can read the SSID from the beacon and automatically set their SSID to allow immediate connection to the nearest access point.

To improve wireless network security, you have to implement two main functions:

- Authentication: It must be verified that clients attempting to connect to the network are authorized users.
- Traffic Encryption: Data passing between the access point and clients must be protected from interception and eavesdropping.

For a more secure network, the access point can implement one or a combination of the following security mechanisms:

- Wired Equivalent Privacy (WEP)page 5-66
- IEEE 802.1Xpage 5-15
- Wireless MAC address filteringpage 5-13
- Wi-Fi Protected Access (WPA or WPA2)page 5-77

Both WEP and WPA security settings are configurable separately for each virtual access point (VAP) interface. MAC address filtering, and RADIUS server settings are global and apply to all VAP interfaces.

The security mechanisms that may be employed depend on the level of security required, the network and management resources available, and the software support provided on wireless clients.

A summary of wireless security considerations is listed in the following table.

Table 5-2. Wireless Security Considerations			
Security Mechanism	Client Support	Implementation Considerations	
WEP	Built-in support on all 802.11g devices	Provides only weak security Requires manual key management	
WEP over 802.1X	Requires 802.1X client support in system or by add-in software (support provided in Windows 2000 SP3 or later and Windows XP)	Provides dynamic key rotation for improved WEP security Requires configured RADIUS server 802.1X EAP type may require management of digital certificates for clients and server	
MAC Address Filtering	Uses the MAC address of client network card	Provides only weak user authentication Management of authorized MAC addresses Can be combined with other methods for improved security Optionally configured RADIUS server	

Table 5-2. Wireless Security Considerations			
Security Mechanism	Client Support	Implementation Considerations	
WPA over 802.1X Mode	Requires WPA-enabled system and network card driver (native support provided in Windows XP)	Provides robust security in WPA-only mode (i.e., WPA clients only) Offers support for legacy WEP clients, but with increased security risk (i.e., WEP authentication keys disabled) Requires configured RADIUS server 802.1X EAP type may require management of digital certificates for clients and server	
WPA PSK Mode	Requires WPA-enabled system and network card driver (native support provided in Windows XP)	Provides good security in small networks Requires manual management of pre-shared key	
WPA2 with 802.1X	Requires WPA-enabled system and network card driver (native support provided in Windows XP)	Provides the strongest security in WPA2-only mode Provides robust security in mixed mode for WPA and WPA2 clients Offers fast roaming for time-sensitive client applications Requires configured RADIUS server 802.1X EAP type may require management of digital certificates for clients and server Clients may require hardware upgrade to be WPA2 compliant	
WPA2 PSK Mode	Requires WPA-enabled system and network card driver (native support provided in Windows XP)	Provides robust security in small networks Requires manual management of pre-shared key Clients may require hardware upgrade to be WPA2 compliant	

Note: You must enable data encryption through the web or CLI in order to enable all types of encryption (WEP, TKIP, or AES) in the access point.

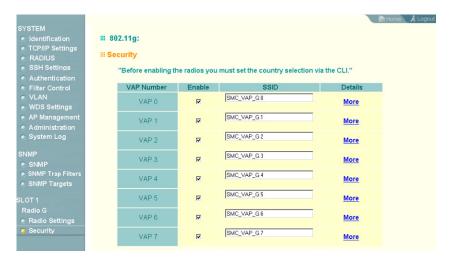
5 System Configuration

The access point can simultaneously support clients using various different security mechanisms. The configuration for these security combinations are outlined in the following table. Note that MAC address authentication can be configured independently to work with all security mechanisms and is indicated separately in the table. Required RADIUS server support is also listed.

Table 5-3. Security Combinations			
Client Security Combination	Configuration Summary ^a	MAC Authentication ^b	RADIUS Server
No encryption and no authentication	Interface Detail Settings: Authentication: Open System Encryption: Disable 802.1x: Disable	Local, RADIUS, or Disabled	Yes ³
Static WEP only (with or without shared key authentication)	Enter 1 to 4 WEP keys Select a WEP transmit key for the interface Interface Detail Settings: Authentication: Shared Key or Open System Encryption: Enable 802.1x: Disable	Local, RADIUS, or Disabled	Yes ^c
Dynamic WEP (802.1x) only	Interface Detail Settings: Authentication: Open System Encryption: Enable 802.1x: Required Set 802.1x key refresh and reauthentication rates	Local, RADIUS, or Disabled	Yes ^c
802.1x WPA only	Interface Detail Settings: Authentication: WPA Encryption: Enable WPA Clients: Required Cipher Suite: TKIP 802.1x: Required Set 802.1x key refresh and reauthentication rates	Local only	Yes
WPA Pre-Shared Key only	Interface Detail Settings: Authentication: WPA-PSK Encryption: Enable WPA Clients: Required Cipher Suite: TKIP 802.1x: Disable WPA Pre-shared Key Type: Hexadicmal or Alphanumeric Enter a WPA Pre-shared key	Local only	No
Static and dynamic (802.1x) WEP keys	Enter 1 to 4 WEP keys Select a WEP transmit key Interface Detail Settings: Authentication: Open System Encryption: Enable 802.1x: Supported Set 802.1x key refresh and reauthentication rates	Local, RADIUS, or Disabled	Yes

	Table 5-3. Security Combinations			
Client Security Combination	Configuration Summary ^a	MAC Authentication ^b	RADIUS Server	
Dynamic WEP and 802.1x WPA	Interface Detail Settings: Authentication: WPA Encryption: Enable WPA Clients: Supported Cipher Suite: WEP 802.1x: Required Set 802.1x key refresh and reauthentication rates	Local or Disabled	Yes	
Static and dynamic (802.1x) WEP keys and 802.1x WPA	Enter 1 to 4 WEP keys Select a WEP transmit key Interface Detail Settings: Authentication: WPA Encryption: Enable WPA Clients: Supported Cipher Suite: WEP 802.1x: Supported Set 802.1x key refresh and reauthentication rates	Local or Disabled	Yes	
802.1x WPA2 only	Interface Detail Settings: Authentication: WPA2 Encryption: Enable WPA Clients: Required Cipher Suite: AES-CCMP 802.1x: Required Set 802.1x key refresh and reauthentication rates	Local or Disabled	Yes	
WPA2 Pre-Shared Key only	Interface Detail Settings: Authentication: WPA2-PSK Encryption: Enable WPA Clients: Required Cipher Suite: AES-CCMP 802.1x: Disable WPA Pre-shared Key Type: Hexadicmal or Alphanumeric Enter a WPA Pre-shared key	Local or Disabled	No	
802.1x WPA-WPA2 Mixed Mode	Interface Detail Settings: Authentication: WPA-WPA2-mixed Encryption: Enable WPA Clients: Required Cipher Suite: TKIP 802.1x. Required Set 802.1x key refresh and reauthentication rates	Local or Disabled	Yes	
WPA-WPA2 Mixed Mode Pre-Shared Key	Interface Detail Settings: Authentication: WPA-WPA2-PSK-mixed Encryption: Enable WPA Clients: Required Cipher Suite: TKIP 802.1x: Disable WPA Pre-shared Key Type: Hexadicmal or Alphanumeric Enter a WPA Pre-shared key	Local or Disabled	No	

- a. The configuration summary does not include the set up for MAC authentication (see page 4-15) or RADIUS server (see page 2-9).
- b. The configuration of RADIUS MAC authentication together with 802.1x WPA or WPA Pre-shared Key is not supported.
- c. RADIUS server required only when RADIUS MAC authentication is configured.


Note: If you choose to configure RADIUS MAC authentication together with 802.1X, the RADIUS MAC address authentication occurs prior to 802.1X authentication. Only when RADIUS MAC authentication succeeds is 802.1X authentication performed. When RADIUS MAC authentication fails, 802.1X authentication is not performed.

Enabling the VAPs

Before enabling the Virtual Access Point (VAP) radio interfaces, first configure all of the relevant raido settings (see "You must first enable VAP interface 0 before the other interfaces can be enabled." on page 5-49.)

After you have configured the radio settings, select Security under Radio G, set an SSID to identify the wireless network service provided by each VAP you want to use, and then click Apply to save your settings.

Before enabling the radio service for any VAP, first configure the WEP, WPA, and 802.1X security settings described in the following sections. After you have finished configuring the security settings, return to the main Security page shown below, start the required VAP interfaces by clicking the Enable checkbox, and then click Apply.

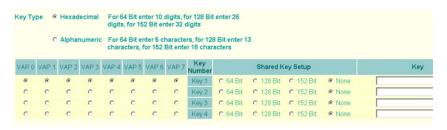
Enable – Enables radio communications on the VAP interface. (Default: Disabled)

Note: You must first enable VAP interface 0 before you can enable other VAP interfaces.

SSID – The name of the basic service set provided by a VAP interface. Clients that want to connect to the network through the access point must set their SSID to the same as that of an access point VAP interface. (Default: SMC_G # (0 to 7); Range: 1-32 characters)

Wired Equivalent Privacy (WEP)

WEP provides a basic level of security, preventing unauthorized access to the network, and encrypting data transmitted between wireless clients and the access point. WEP uses static shared keys (fixed-length hexadecimal or alphanumeric strings) that are manually distributed to all clients that want to use the network.


WEP is the security protocol initially specified in the IEEE 802.11 standard for wireless communications. Unfortunately, WEP has been found to be seriously flawed and cannot be recommended for a high level of network security. For more robust wireless security, the access point provides Wi-Fi Protected Access (WPA) for improved data encryption and user authentication.

Setting up shared keys enables the basic IEEE 802.11 Wired Equivalent Privacy (WEP) on the access point to prevent unauthorized access to the network.

If you choose to use WEP shared keys instead of an open system, be sure to define at least one static WEP key for user authentication and data encryption. Also, be sure that the WEP shared keys are the same for each client in the wireless network.

Note that all clients share the same keys, which are used for user authentication and data encryption. Up to four keys can be specified. These four keys are used for all VAP interfaces on the same radio.

To set up WEP shared keys, click Radio Settings.

Key Type – Select the preferred method of entering WEP encryption keys on the access point and enter up to four keys:

 Hexadecimal: Enter keys as 10 hexadecimal digits (0-9 and A-F) for 64 bit keys, 26 hexadecimal digits for 128 bit keys, or 32 hexadecimal digits for 152 bit keys. This is the default setting.

5 System Configuration

 Alphanumeric: Enter keys as 5 alphanumeric characters for 64 bit keys, 13 alphanumeric characters for 128 bit keys, or 16 alphanumeric characters for 152 bit keys.


Key Number – Selects the key number to use for encryption for each VAP interface. If the clients have all four keys configured to the same values, you can change the encryption key to any of the eight settings without having to update the client keys. (Default: Key 1)

Shared Key Setup – Select 64 Bit, 128 Bit, or 152 Bit key length. Note that the same size of encryption key must be supported on all wireless clients. (Default: None)

Note: Key index and type must match that configured on the clients.

Note: In a mixed-mode environment with clients using static WEP keys and WPA, select WEP transmit key index 2, 3, or 4. The access point uses transmit key index 1 for the generation of dynamic keys.

To enable WEP shared keys for a VAP interface, click Security under Radio G. Then, select the VAP interface that will use WEP keys by clicking More, and configure the Authentication Type Setup and Encryption fields.

Authentication Type Setup – Sets the access point to communicate as an open system that accepts network access attempts from any client, or with clients using pre-configured static shared keys. (Default: Open System)

- Open System: If you don't set up any other security mechanism on the access point, the network has no protection and is open to all users. This is the default setting.
- Shared Key: Sets the access point to use WEP shared keys. If this option is selected, you must configure at least one key on the access point and all clients.

Note: To use 802.1X on wireless clients requires a network card driver and 802.1X client software that supports the EAP authentication type that you want to use. Windows 2000 SP3 or later and Windows XP provide 802.1X client support. Windows XP also provides native WPA support. Other systems require additional client software to support 802.1X and WPA.

Encryption – Enable or disable the access point to use data encryption (WEP, TKIP, or AES). If this option is selected when using static WEP keys, you must configure at least one key on the access point and all clients. (Default: Disabled)

Note: You must enable data encryption through the web or CLI in order to enable all types of encryption (WEP, TKIP, or AES) in the access point.

CLI Commands for WEP Shared Key Security – To enable WEP shared key security for the 802.11g interface, use the **interface wireless g** command from the CLI configuration mode to access the interface mode for the 802.11g radio. First use the **key** command to define up to four WEP keys that can be used for all VAP interfaces on the radio. Then use the **vap** command to access each VAP interface to configure other security settings.

From the VAP interface configuration mode, use the **authentication** command to enable WEP shared-key authentication and the **encryption** command to enable data encryption. Then set one key as the transmit key for the VAP interface using the **transmit-key** command. To view the current security settings, use the **show interface wireless g 0** command from the Exec mode.

```
Enterprise AP(config)#interface wireless g
                                                 6-87
Enter Wireless configuration commands, one per line.
Enterprise AP(if-wireless g) #key 1 128 ascii abcdeabcdeabc6-116
Enterprise AP(if-wireless q) #vap 0
Enterprise AP(if-wireless q: VAP[0]) #no 802.1X
                                                 6-64
Enterprise AP(if-wireless g: VAP[0]) #authentication shared6-116
Enterprise AP(if-wireless q: VAP[0]) #encryption
Enterprise AP(if-wireless q: VAP[0]) #transmit-key 1 6-117
Enterprise AP(if-wireless g: VAP[0]) #exit
Enterprise AP#show interface wireless q 0
                                                 6-107
Wireless Interface Information
_____
 -----Identification-----
Description
                             : SMC 802.11g Access Point
SSID
                             : SMC G 0
Channel
                             : 11 (AUTO)
Status
                             : DISABLED
MAC Address
                             : 00:12:cf:05:95:08
-----802.11 Parameters-----
Radio Mode
                             : b & g mixed mode
Transmit Power
                            : FULL (5 dBm)
Max Station Data Rate
                            : 54Mbps
Multicast Data Rate
                            : 5.5Mbps
Fragmentation Threshold
                            : 2346 bytes
                            : 2347 bytes
RTS Threshold
Beacon Interval
                            : 100 TUs
Authentication Timeout Interval: 60 Mins
Association Timeout Interval : 30 Mins
DTIM Interval
                            : 1 beacon
Preamble Length
                            : SHORT-OR-LONG
Maximum Association
                            : 64 stations
MIC Mode
                            : Software
Super G
                             : Disabled
VLAN ID
                             : 1
```

```
------Security-----
Closed System
                            : Disabled
Multicast cipher
                           : WEP
Unicast cipher
                           : TKIP and AES
WPA clients
                           : DISABLED
WPA Key Mgmt Mode
                           : PRE SHARED KEY
WPA PSK Key Type
                           : PASSPHRASE
                           : EMPTY
WPA PSK Kev
PMKSA Lifetime
                            : 720 minutes
Encryption
                           : DISABLED
Default Transmit Key
                           : 1
                           : Key 1: EMPTY Key 2: EMPTY Key 3: EMPTY Key 4: EMPTY
Common Static Keys
Pre-Authentication
                           : DISABLED
Authentication Type
                           : OPEN
-----802.1x-----
802.1x
                           : DISABLED
Broadcast Key Refresh Rate : 30 min
Session Key Refresh Rate
                           : 30 min
802.1x Session Timeout Value
                           : 0 min
-----Antenna-----
Antenna Control method
                           : Diversity
Antenna ID
                           : 0x0000(Default Antenna)
Antenna Location
                            : Indoor
-----Quality of Service-----
                            : SUPPORTED
WMM Mode
WMM Acknowledge Policy
ACO(Best Effort)
                           : Acknowledge
AC1 (Background)
                            : Acknowledge
AC2 (Video)
                           : Acknowledge
                           : Acknowledge
AC3 (Voice)
WMM BSS Parameters
ACO (Best Effort)
                           : logCwMin: 4 logCwMax: 10
AIFSN: 3
                             Admission Control: No.
                             TXOP Limit: 0.000 ms
AC1 (Background)
                           : logCwMin: 4 logCwMax: 10
ATESN: 7
                             Admission Control: No
                             TXOP Limit: 0.000 ms
AC2 (Video)
                           : logCwMin: 3 logCwMax: 4
 AIFSN: 2
                             Admission Control: No
                              TXOP Limit: 3.008 ms
AC3(Voice)
                           : logCwMin: 2 logCwMax: 3
AIFSN: 2
                             Admission Control: No
                             TXOP Limit: 1.504 ms
WMM AP Parameters
```

```
ACO (Best Effort)
                            : logCwMin: 4 logCwMax:
 ATESN: 3
                             Admission Control: No
                             TXOP Limit: 0.000 ms
AC1 (Background)
                           : logCwMin: 4 logCwMax: 10
AIFSN: 7
                             Admission Control: No
                             TXOP Limit: 0.000 ms
AC2 (Video)
                            : logCwMin: 3 logCwMax:
 AIFSN: 1
                             Admission Control: No
AC3 (Voice)
                            : logCwMin: 2 logCwMax:
 AIFSN: 1
                             Admission Control: No
                             TXOP Limit: 1.504 ms
                             TXOP Limit: 3.008 ms
______
 Enterprise AP#
```

CLI Commands for WEP over 802.1X Security – Use the **vap** command to access each VAP interface to configure the security settings. First set 802.1X to required using the 802.1x command and set the **802.1X** key refresh rates. Then, use the **authentication** command to select open system authentication and the **encryption** command to enable data encryption. To view the current security settings, use the **show interface wireless g 0** command (not shown in example).

```
Enterprise AP(if-wireless g) #vap 0
Enterprise AP(if-wireless g: VAP[0]) #802.1X required 6-64
Enterprise AP(if-wireless g: VAP[0]) #802.1X
broadcast-key-refresh-rate 5 6-65
Enterprise AP(if-wireless g: VAP[0]) #802.1X
session-key-refresh-rate 5 6-66
Enterprise AP(if-wireless g: VAP[0]) #802.1X session-timeout 300
6-66
Enterprise AP(if-wireless g: VAP[0]) #interface wireless g6-87
Enter Wireless configuration commands, one per line.
Enterprise AP(if-wireless g: VAP[0]) #authentication open6-116
Enterprise AP(if-wireless g: VAP[0]) #encryption 6-115
Enterprise AP(if-wireless g: VAP[0]) #
```

Wi-Fi Protected Access (WPA)

WPA employs a combination of several technologies to provide an enhanced security solution for 802.11 wireless networks.

The access point supports the following WPA components and features:

IEEE 802.1X and the Extensible Authentication Protocol (EAP): WPA employs 802.1X as its basic framework for user authentication and dynamic key management. The 802.1X client and RADIUS server should use an appropriate EAP type—such as EAP-TLS (Transport Layer Security), EAP-TTLS (Tunneled TLS), or PEAP (Protected EAP)—for strongest authentication. Working together, these protocols provide "mutual authentication" between a client, the access point, and a RADIUS server that prevents users from accidentally joining a rogue network. Only when a RADIUS server has authenticated a user's credentials will encryption keys be sent to the access point and client.

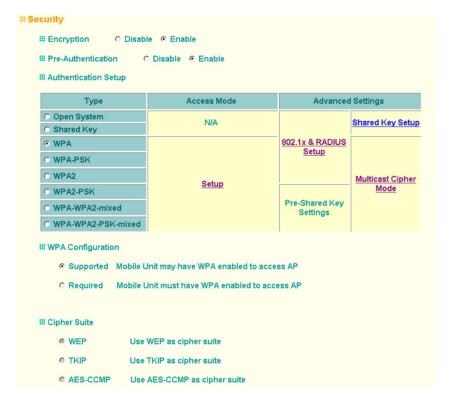
Note: To implement WPA on wireless clients requires a WPA-enabled network card driver and 802.1X client software that supports the EAP authentication type that you want to use. Windows XP provides native WPA support, other systems require additional software.

Temporal Key Integrity Protocol (TKIP): WPA specifies TKIP as the data encryption method to replace WEP. TKIP avoids the problems of WEP static keys by dynamically changing data encryption keys. Basically, TKIP starts with a master (temporal) key for each user session and then mathematically generates other keys to encrypt each data packet. TKIP provides further data encryption enhancements by including a message integrity check for each packet and a re-keying mechanism, which periodically changes the master key.

WPA Pre-Shared Key Mode (WPA-PSK, WPA2-PSK): For enterprise deployment, WPA requires a RADIUS authentication server to be configured on the wired network. However, for small office networks that may not have the resources to configure and maintain a RADIUS server, WPA provides a simple operating mode that uses just a pre-shared password for network access. The Pre-Shared Key mode uses a common password for user authentication that is manually entered on the access point and all wireless clients. The PSK mode uses the same TKIP packet encryption and key management as WPA in the enterprise, providing a robust and manageable alternative for small networks.

Mixed WPA and WEP Client Support: WPA enables the access point to indicate its supported encryption and authentication mechanisms to clients using its beacon signal. WPA-compatible clients can likewise respond to indicate their WPA support. This enables the access point to determine which clients are using WPA security and which are using legacy WEP. The access point uses TKIP unicast data encryption keys for WPA clients and WEP unicast keys for WEP clients. The global encryption key for multicast and broadcast traffic must be the same for all clients, therefore it restricts encryption to a WEP key.

5 System Configuration


When access is opened to both WPA and WEP clients, no authentication is provided for the WEP clients through shared keys. To support authentication for WEP clients in this mixed mode configuration, you can use either MAC authentication or 802.1X authentication.

WPA2 – WPA was introduced as an interim solution for the vulnerability of WEP pending the ratification of the IEEE 802.11i wireless security standard. In effect, the WPA security features are a subset of the 802.11i standard. WPA2 includes the now ratified 802.11i standard, but also offers backward compatibility with WPA. Therefore, WPA2 includes the same 802.1X and PSK modes of operation and support for TKIP encryption. The main differences and enhancements in WPA2 can be summarized as follows:

- Advanced Encryption Standard (AES): WPA2 uses AES Counter-Mode encryption with Cipher Block Chaining Message Authentication Code (CBC-MAC) for message integrity. The AES Counter-Mode/CBCMAC Protocol (AES-CCMP) provides extremely robust data confidentiality using a 128-bit key. The AES-CCMP encryption cipher is specified as a standard requirement for WPA2. However, the computational intensive operations of AES-CCMP requires hardware support on client devices. Therefore to implement WPA2 in the network, wireless clients must be upgraded to WPA2-compliant hardware.
- WPA2 Mixed-Mode: WPA2 defines a transitional mode of operation for networks
 moving from WPA security to WPA2. WPA2 Mixed Mode allows both WPA and
 WPA2 clients to associate to a common SSID interface. In mixed mode, the unicast
 encryption cipher (TKIP or AES-CCMP) is negotiated for each client. The access
 point advertises its supported encryption ciphers in beacon frames and probe
 responses. WPA and WPA2 clients select the cipher they support and return the
 choice in the association request to the access point. For mixed-mode operation,
 the cipher used for broadcast frames is always TKIP. WEP encryption is not
 allowed.
- Key Caching: WPA2 provides fast roaming for authenticated clients by retaining
 keys and other security information in a cache, so that if a client roams away from
 an access point and then returns, re-authentication is not required. When a WPA2
 client is first authenticated, it receives a Pairwise Master Key (PMK) that is used to
 generate other keys for unicast data encryption. This key and other client
 information form a Security Association that the access point names and holds in
 a cache.
- Preauthentication: Each time a client roams to another access point it has to be fully re-authenticated. This authentication process is time consuming and can disrupt applications running over the network. WPA2 includes a mechanism, known as pre-authentication, that allows clients to roam to a new access point and be quickly associated. The first time a client is authenticated to a wireless network it has to be fully authenticated. When the client is about to roam to another access point in the network, the access point sends pre-authentication messages to the new access point that include the client's security association information. Then when the client sends an association request to the new access point, the client is

known to be already authenticated, so it proceeds directly to key exchange and association.

To configure WPA, click Security under Radio G. Select one of the VAP interfaces by clicking More. Select one of the WPA options in the Authentication Setup table, and then configure the parameters displayed beneath the table.

5 System Configuration

The WPA configuration parameters are described below:

Encryption – You must enable data encryption in order to enable all types of encryption (WEP, TKIP, or AES) in the access point.

Pre-Authentication – When using WPA2 over 802.1X, pre-authentication can be enabled, which allows clients to roam to a new access point and be quickly associated without performing full 802.1X authentication. (Default: Disabled)

Authentication Setup — To use WPA or WPA2, set the access point to one of the following options. If a WPA/WPA2 mode that operates over 802.1X is selected (WPA, WPA2, or WPA-WPA2-mixed), the 802.1X settings and RADIUS server details need to be configured. Be sure you have also configured a RADIUS server on the network before enabling authentication. If a WPA/WPA2 Pre-shared Key mode is selected (WPA-PSK, WPA2-PSK, or WPA-WPA2 PSK-Mixed), be sure to specify the key string.

- WPA: Clients using WPA over 802.1X are accepted for authentication.
- WPA-PSK: Clients using WPA with a Pre-shared Key are accepted for authentication.
- WPA2: Clients using WPA2 over 802.1X are accepted for authentication.
- WPA2-PSK: Clients using WPA2 with a Pre-shared Key are accepted for authentication.
- WPA-WPA2-mixed: Clients using WPA or WPA2 over 802.1X are accepted for authentication.
- WPA-WPA2-PSK-mixed: Clients using WPA or WPA2 with a Pre-shared Key are accepted for authentication.

WPA Configuration – Each VAP interface can be configured to allow only WPA-enabled clients to access the network (Required), or to allow access to both WPA and WEP clients (Supported). (Default: Required)

Cipher Suite – Selects an encryption method for the global key used for multicast and broadcast traffic, which is supported by all wireless clients.

- WEP: WEP is used as the multicast encryption cipher. You should select WEP only
 when both WPA and WEP clients are supported.
- · TKIP: TKIP is used as the multicast encryption cipher.
- AES-CCMP: AES-CCMP is used as the multicast encryption cipher. AES-CCMP is the standard encryption cipher required for WPA2.

WPA Pre-Shared Key Type – If the WPA or WPA2 pre-shared-key mode is used, all wireless clients must be configured with the same key to communicate with the access point.

- Hexadecimal Enter a key as a string of 64 hexadecimal numbers.
- Alphanumeric Enter a key as an easy-to-remember form of letters and numbers.
 The string must be from 8 to 63 characters, which can include spaces.

The configuration settings for WPA are summarized below:

Table 5-4. WPA Configuration Settings			
WPA and WPA2 pre-shared key only	WPA and WPA2 over 802.1X		
Encryption: Enabled Authentication Setup: WPA-PSK, WPA2-PSK, or WPA-WPA2-mixed	Encryption: Enabled Authentication Setup: WPA, WPA2, WPA-WPA2-mixed		
WPA Cipher Mode: WEP/TKIP/AES-CCMP WPA Pre-shared Key Type: Hex/ASCII	WPA Cipher Mode: WEP/TKIP/AES-CCMP (requires RADIUS server to be specified)		

- 1: You must enable data encryption in order to enable all types of encryption in the access point.
- 2: Select TKIP when any WPA clients do not support AES. Select AES only if all clients support AES.

CLI Commands for WPA Using Pre-shared Key Security – Be sure to first disable 802.1X port authentication using the **802.1X** command from the configuration mode. Then, from the 802.11g interface configuration mode, use the **vap** command to access each VAP interface to configure other security settings.

From the VAP interface configuration mode, use the **authentication** command to set the access point to "Open System." Use the **encryption** command to enable data encryption. To enable WPA to be required for all clients, use the **wpa-clients** command. Set the broadcast and multicast key encryption using the **multicast-cipher** command. Use the **wpa-mode** command to enable the Pre-shared Key mode. To enter a key value, use the **wpa-psk-type** command to specify a hexadecimal or alphanumeric key, and then use the **wpa-pre-shared-key** command to define the key. To view the current security settings, use the **show interface wireless g 0** command (not shown in example).

```
Enterprise AP(config)#interface wireless g
                                                       6-87
Enter Wireless configuration commands, one per line.
Enterprise AP(if-wireless g) #vap 0
Enterprise AP(if-wireless q: VAP[0]) #no 802.1X
Enterprise AP(if-wireless g: VAP[0]) #wpa-pre-shared-key
    passphrase-key agoodsecret
Enterprise AP(if-wireless g: VAP[0]) #auth wpa-psk required
Data Encryption is set to Enabled.
WPA2 Clients Mode is set to Disabled.
WPA Clients Mode is set to Required.
WPA Multicast Cipher is set to TKIP.
WPA Unicast Cipher can accept TKIP only.
WPA Authentication is set to Pre-Shared Key.
Enterprise AP(if-wireless q: VAP[0])#
Enterprise AP(if-wireless g: VAP[0])#
```

CLI Commands for WPA Over 802.1X Security – First set 802.1X to required using the **802.1X** command and set the 802.1X key refresh rates. Then 802.11g interface configuration mode, use the **vap** command to access each VAP interface to configure other security settings.

From the VAP interface configuration mode, use the **authentication** command to select open system authentication and the **encryption** command to enable data encryption. Use the **wpa-clients** command to set WPA to be required or supported for clients. Use the **wpa-mode** command to enable WPA dynamic keys over 802.1X. Set the broadcast and multicast key encryption using the **multicast-cipher** command. To view the current security settings use the **show interface wireless g 0** command (not shown in example).

```
Enterprise AP(config)#interface wireless g
                                                       6-87
Enter Wireless configuration commands, one per line.
Enterprise AP(if-wireless g) #vap 0
Enterprise AP(if-wireless q: VAP[0]) #802.required
                                                       6-64
Enterprise AP(if-wireless g: VAP[0]) #802.1X
 broadcast-key-refresh-rate 5
 6-65
Enterprise AP(if-wireless g: VAP[0])#802.1X
 session-key-refresh-rate 5
 6-66
Enterprise AP(if-wireless g: VAP[0])#802.1X session-timeout 300
Enterprise AP(if-wireless q: VAP[0]) #authentication open6-116
Enterprise AP(if-wireless g: VAP[0])#encryption
Enterprise AP(if-wireless g: VAP[0]) #wpa-clients required6-120
Enterprise AP(if-wireless q: VAP[0]) #multicast-cipher TKIP6-118
Enterprise AP(if-wireless g: VAP[0])#
```

Configuring 802.1X

IEEE 802.1X is a standard framework for network access control that uses a central RADIUS server for user authentication. This control feature prevents unauthorized access to the network by requiring an 802.1X client application to submit user credentials for authentication. The 802.1X standard uses the Extensible Authentication Protocol (EAP) to pass user credentials (either digital certificates, user names and passwords, or other) from the client to the RADIUS server. Client authentication is then verified on the RADIUS server before the access point grants client access to the network.

The 802.1X EAP packets are also used to pass dynamic unicast session keys and static broadcast keys to wireless clients. Session keys are unique to each client and are used to encrypt and correlate traffic passing between a specific client and the access point. You can also enable broadcast key rotation, so the access point provides a dynamic broadcast key and changes it at a specified interval.

Open the Security page, and click More for one of the VAP interfaces.

You can enable 802.1X as optionally supported or as required to enhance the security of the wireless network. (Default: Disable)

- Disable: The access point does not support 802.1X authentication for any wireless client. After successful wireless association with the access point, each client is allowed to access the network.
- Supported: The access point supports 802.1X authentication only for clients initiating the 802.1X authentication process (i.e., the access point does not initiate 802.1X authentication). For clients initiating 802.1X, only those successfully authenticated are allowed to access the network. For those clients not initiating 802.1X, access to the network is allowed after successful wireless association with the access point. The 802.1X supported mode allows access for clients not using WPA or WPA2 security.
- Required: The access point enforces 802.1X authentication for all associated wireless clients. If 802.1X authentication is not initiated by a client, the access point will initiate authentication. Only those clients successfully authenticated with 802.1X are allowed to access the network.

Note: If 802.1X is enabled on the access point, then RADIUS setup must be completed (see "RADIUS" on page 5-7).

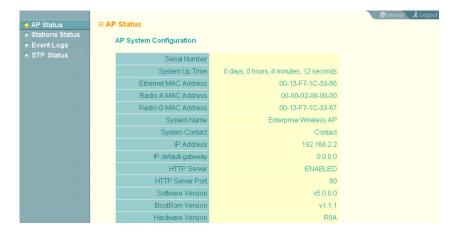
When 802.1X is enabled, the broadcast and session key rotation intervals can also be configured.

- Broadcast Key Refresh Rate: Sets the interval at which the broadcast keys are refreshed for stations using 802.1X dynamic keying. (Range: 0-1440 minutes; Default: 0 means disabled)
- Session Key Refresh Rate: The interval at which the access point refreshes unicast session keys for associated clients. (Range: 0-1440 minutes; Default: 0 means disabled)

 802.1X Reauthentication Refresh Rate: The time period after which a connected client must be re-authenticated. During the re-authentication process of verifying the client's credentials on the RADIUS server, the client remains connected the network. Only if re-authentication fails is network access blocked. (Range: 0-65535 seconds; Default: 0 means disabled)

CLI Commands for 802.1X Authentication – Use the **802.1X supported** command from the VAP interface mode to enable 802.1X authentication. Set the session and broadcast key refresh rate, and the re-authentication timeout. To display the current settings, use the **show authentication** command from the Exec mode.

```
Enterprise AP(if-wireless q: VAP[0]) #802.1X supported 6-64
Enterprise AP(if-wireless q: VAP[0]) #802.1X
broadcast-key-refresh-rate 5
                                               6-65
Enterprise AP(if-wireless g: VAP[0]) #802.1X
 session-key-refresh-rate 5
                                               6-66
Enterprise AP(if-wireless q: VAP[0]) #802.1X
 session-timeout 300
                                               6-66
Enterprise AP(if-wireless g: VAP[0]) #exit
Enterprise AP#show authentication
                                               6-67
Authentication Information
______
MAC Authentication Server : DISABLED
MAC Auth Session Timeout Value : 0 min
                          : DISABLED
802.1x supplicant
802.1x supplicant user
                          : EMPTY
802.1x supplicant password
                          : EMPTY
Address Filtering
                          : ALLOWED
System Default : ALLOW addresses not found in filter table.
Filter Table
MAC Address
                    Status
_____
                    _____
00-70-50-cc-99-1a
                    DENIED
00-70-50-cc-99-1b
                     ALLOWED
______
Enterprise AP#
```


Status Information

The Status page includes information on the following items:

Menu	Description	Page
AP Status	Displays configuration settings for the basic system and the wireless interface	5-85
Station Status	Shows the wireless clients currently associated with the access point	5-88
Event Logs	Shows log messages stored in memory	5-91

Access Point Status

The AP Status window displays basic system configuration settings, as well as the settings for the wireless interface.

		🛅 Home 🕏 Logo
AP StatusStations Status	Interface Wireless G	
Event Logs	VAP 0 SSID	SMC_VAP_G 0
STP Status	VAP 1 SSID	SMC_VAP_G 1
	VAP 2 SSID	SMC_VAP_G 2
	VAP 3 SSID	SMC_VAP_G 3
	VAP 4 SSID	SMC_VAP_G 4
	VAP 5 SSID	SMC_VAP_G 5
	VAP 6 SSID	SMC_VAP_G 6
	VAP 7 SSID	SMC_VAP_G 7
	Radio g Channel	1
	VAP 0 Encryption	DISABLED
	VAP 1 Encryption	DISABLED
	VAP 2 Encryption	DISABLED

AP System Configuration – The AP System Configuration table displays the basic system configuration settings:

- System Up Time: Length of time the management agent has been up.
- MAC Address: The physical layer address for this device.
- System Name: Name assigned to this system.
- System Contact: Administrator responsible for the system.
- IP Address: IP address of the management interface for this device.
- IP Default Gateway: IP address of the gateway router between this device and management stations that exist on other network segments.
- HTTP Server: Shows if management access via HTTP is enabled.
- HTTP Server Port: Shows the TCP port used by the HTTP interface.
- Version: Shows the version number for the runtime code.

AP Wireless Configuration – The AP Wireless Configuration tables display the radio and VAP interface settings listed below. Note that Interface Wireless G refers the 802.11b/g radio.

- SSID: The service set identifier for the VAP interface.
- Radio Channel: The radio channel through which the access point communicates with wireless clients.
- · Encryption: The key size used for data encryption.
- Authentication Type: Shows the type of authentication used.
- 802 1X: Shows if IEEE 802 1X access control for wireless clients is enabled.

CLI Commands for Displaying System Settings – To view the current access point system settings, use the **show system** command from the Exec mode. To view the current radio interface settings, use the **show interface wireless g 0** command (see page 6-107).

```
Enterprise AP#show system
                                                                                                                                                                                          6-22
 System Information
 _____
 Serial Number
System Up time : 1 days, 3 hours, 41 minutes, 40 seconds
System Name : Enterprise Wireless AP
 System Location
 System Contact : Contact
 System Country Code : US - UNITED STATES
MAC Address : 00-13-F7-1C-33-66
MAC Address : 00-13-F7-1C-33-66
Radio G MAC Address : 00-13-F7-1C-33-67
IP Address : 192.168.2
Subnet Mask : 255.255.2
Default Gateway : 0.0.0.0
VLAN State : DISABLED
                                                                         : 192.168.2.2
                                                                        : 255.255.255.0
Management VLAN ID(AP): 1
 IAPP State : ENABLED
DHCP Client
HTTP Server
                                                                        : ENABLED
                                                                         : ENABLED
HTTP Server Port : 80
HTTP Session Timeout : 300 sec(s)
HTTPS Server : ENABLE HTTPS Server Port : 443 Slot Status : Single Boot Rom Version : v1.1.1 Software Version : v5.0.0 SSH Server : FNABLE : FNABLE : FNABLE : STATE : STATE : STATE : FNABLE : 
                                                                       : ENABLED
                                                                        : Single band(b/g)
                                                                       : v5.0.0.0
                                                                        : ENABLED
 SSH Server
SSH Server Port : 22
Telnet Server : ENA
                                                                       : ENABLED
                                                                         : DISABLED
DHCP Relay
______
Enterprise AP#
```

Station Status

The Station Status window shows the wireless clients currently associated with the access point.

	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type
VAP 1				
	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Кеу Туре
VAP 2				
	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type
VAP 3				
	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type
VAP 4				
	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type
VAP 5				
	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type
VAP 6				
	802	.11g Station	_	
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type
VAP 7				
	802	.11g Station		
Station Address	Authenticated	Associated	Forwarding Allowed	Key Type

The Station Configuration page displays basic connection information for all associated stations as described below. Note that this page is automatically refreshed every five seconds.

- · Station Address: The MAC address of the wireless client.
- Authenticated: Shows if the station has been authenticated. The two basic
 methods of authentication supported for 802.11 wireless networks are "open
 system" and "shared key." Open-system authentication accepts any client
 attempting to connect to the access point without verifying its identity. The

shared-key approach uses Wired Equivalent Privacy (WEP) to verify client identity by distributing a shared key to stations before attempting authentication.

- Associated: Shows if the station has been successfully associated with the access
 point. Once authentication is completed, stations can associate with the current
 access point, or reassociate with a new access point. The association procedure
 allows the wireless system to track the location of each mobile client, and ensure
 that frames destined for each client are forwarded to the appropriate access point.
- Forwarding Allowed: Shows if the station has passed 802.1X authentication and is now allowed to forward traffic to the access point.
- Key Type: The data encryption method used for this client.

CLI Commands for Displaying Station Status – To view status of clients currently associated with the access point, use the **show station** command from the Exec mode.

```
Enterprise AP#show station
                                              6-108
Station Table Information
______
if-wireless G VAP [0]
802.11g Channel : Auto
No 802.11g Channel Stations.
if-wireless G VAP [1] :
802.11g Channel: Auto
No 802.11g Channel Stations.
. . . .
No 802.11g Channel Stations.
if-wireless g VAP [7] :
802.11g Channel: Auto
No 802.11g Channel Stations.
if-wireless G VAP [0] :
802.11g Channel: Auto
No 802.11g Channel Stations.
if-wireless G VAP [1] :
802.11g Channel: Auto
No 802.11g Channel Stations.
. . . .
No 802.11g Channel Stations.
if-wireless G VAP [7]
802.11g Channel: Auto
No 802.11g Channel Stations.
______
Enterprise AP#
```

Event Logs

The Event Logs window shows the log messages generated by the access point and stored in memory.

The Event Logs table displays the following information:

- Log Time: The time the log message was generated.
- Event Level: The logging level associated with this message. For a description of the various levels, see "logging level" on page 5-33.
- · Event Message: The content of the log message.

Error Messages – An example of a logged error message is: "Station Failed to authenticate (unsupported algorithm)."

This message may be caused by any of the following conditions:

- Access point was set to "Open Authentication", but a client sent an authentication request frame with a "Shared key."
- Access point was set to "Shared Key Authentication," but a client sent an authentication frame for "Open System."
- WEP keys do not match: When the access point uses "Shared Key Authentication," but the key used by client and access point are not the same, the frame will be decrypted incorrectly, using the wrong algorithm and sequence number.

CLI Commands for *Displaying the Logging Status* – From the global configuration mode, use the **show logging** command.

```
Enterprise AP#show loggging
                                           6-31
Logging Information
______
Syslog State
                     : Enabled
                    : Enabled
Logging Console State
Logging Level
                     : Alert
Logging Facility Type : 16
Servers
  1: 192.168.1.19, UDP Port: 514, State: Enabled
  2: 0.0.0.0, UDP Port: 514, State: Disabled
  3: 0.0.0.0, UDP Port: 514, State: Disabled
  4: 0.0.0.0, UDP Port: 514, State: Disabled
_____
Enterprise AP#
```

CLI Commands for *Displaying Event Logs* – To view the access point log entries, use the **show event-log** command from the Exec mode. To clear all log entries from the access point, use the **logging clear** command from the Global Configuration mode.

```
Enterprise AP#show event-log
                                                       6-32
Mar 09 11:57:55 Information: 802.11g:11g Radio Interface
 Enabled
Mar 09 11:57:55 Information: 802.11q:Radio channel updated to
Mar 09 11:57:34 Information: 802.11g:11g Radio Interface
 Enabled
Mar 09 11:57:18 Information: 802.11g:11g Radio Interface
Enabled
Mar 09 11:55:52 Information: SSH task: Set SSH server port to
 2.2
Mar 09 11:55:52 Information: SSH task: Enable SSH server.
Mar 09 11:55:52 Information: Enable Telnet.
Mar 09 11:55:40 Information: 802.11g:11g Radio Interface
Disabled
Mar 09 11:55:40 Information: 802.11g:Transmit Power set to
 OUARTER
Press <n> next.  previous. <a> abort. <y> continue to end :
Enterprise AP#configure
Enter configuration commands, one per line. End with \mathtt{CTRL}/\mathtt{Z}
Enterprise AP(config) #logging clear
                                                       6-31
Enterprise AP#
```

Chapter 6: Command Line Interface

Using the Command Line Interface

Accessing the CLI

When accessing the management interface for the over a direct connection to the console port, or via a Telnet connection, the access point can be managed by entering command keywords and parameters at the prompt. Using the access point's command-line interface (CLI) is very similar to entering commands on a UNIX system.

Console Connection

To access the access point through the console port, perform these steps:

- At the console prompt, enter the user name and password. (The default user name is "admin" and the default password is "smcadmin") When the user name is entered, the CLI displays the "Enterprise AP#" prompt.
- 2. Enter the necessary commands to complete your desired tasks.
- 3. When finished, exit the session with the "exit" command.

After connecting to the system through the console port, the login screen displays:

```
Username: admin
Password:
Enterprise AP#
```

Caution: The CLI examples shown later in this manual abbreviate the console prompt to just "AP." The console prompt can be configured using the "prompt" command (page 6-14).

Telnet Connection

Telnet operates over the IP transport protocol. In this environment, your management station and any network device you want to manage over the network must have a valid IP address. Valid IP addresses consist of four numbers, 0 to 255, separated by periods. Each address consists of a network portion and host portion. For example, if the access point cannot acquire an IP address from a DHCP server, the default IP address used by the access point, 192.168.2.2, consists of a network portion (192.168.2) and a host portion (2).

6 Command Line Interface

To access the access point through a Telnet session, you must first set the IP address for the access point, and set the default gateway if you are managing the access point from a different IP subnet. For example:

```
Enterprise AP#configure
Enterprise AP(config) #interface ethernet
Enterprise AP(if-ethernet) #ip address 10.1.0.1 255.255.255.0 10.1.0.254
Enterprise AP(if-ethernet) #
```

If your corporate network is connected to another network outside your office or to the Internet, you need to apply for a registered IP address. However, if you are attached to an isolated network, then you can use any IP address that matches the network segment to which you are attached.

After you configure the access point with an IP address, you can open a Telnet session by performing these steps.

- From the remote host, enter the Telnet command and the IP address of the device you want to access.
- At the prompt, enter the user name and system password. The CLI will display the "Enterprise AP#" prompt to show that you are using executive access mode (i.e., Exec).
- 3. Enter the necessary commands to complete your desired tasks.
- 4. When finished, exit the session with the "quit" or "exit" command.

After entering the Telnet command, the login screen displays:

```
Username: admin
Password:
Enterprise AP#
```

Caution: You can open up to four sessions to the device via Telnet.

Entering Commands

This section describes how to enter CLI commands.

Keywords and Arguments

A CLI command is a series of keywords and arguments. Keywords identify a command, and arguments specify configuration parameters. For example, in the command "show interfaces ethernet," **show** and **interfaces** are keywords, and **ethernet** is an argument that specifies the interface type.

You can enter commands as follows:

- To enter a simple command, enter the command keyword.
- To enter commands that require parameters, enter the required parameters after the command keyword. For example, to set a password for the administrator, enter:

```
Enterprise AP(config) #username smith
```

Minimum Abbreviation

The CLI will accept a minimum number of characters that uniquely identify a command. For example, the command "configure" can be entered as **con**. If an entry is ambiguous, the system will prompt for further input.

Command Completion

If you terminate input with a Tab key, the CLI will print the remaining characters of a partial keyword up to the point of ambiguity. In the "configure" example, typing **con** followed by a tab will result in printing the command up to "**configure**."

Getting Help on Commands

You can display a brief description of the help system by entering the **help** command. You can also display command syntax by following a command with the "?" character to list keywords or parameters.

Showing Commands

If you enter a "?" at the command prompt, the system will display the first level of keywords for the current configuration mode (Exec, Global Configuration, or Interface). You can also display a list of valid keywords for a specific command. For example, the command "show?" displays a list of possible show commands:

```
Enterprise AP#show ?

APmanagement Show management AP information.
authentication Show Authentication parameters
bootfile Show bootfile name
bridge Show bridge
config System snapshot for tech support
dhop-relay Show DHCP Relay Configuration
event-log Show event log on console
filters Show filters
hardware Show hardware version
history Display the session history
interface Show interface information
line TTY line information
link-integrity Show link integrity information
logging Show the logging buffers
radius Show radius server
rogue-ap Show Rogue ap Stations
snmp Show snmp configuration
sntp Show snmp configuration
sntp Show sntp configuration
station Show 802.11 station table
system Show system information
Enterprise AP#show
```

The command "show interface?" will display the following information:

```
Enterprise AP#show interface ?
ethernet Show Ethernet interface
wireless Show wireless interface
<cr>
Enterprise AP#show interface
```

6 Command Line Interface

Partial Keyword Lookup

If you terminate a partial keyword with a question mark, alternatives that match the initial letters are provided. (Remember not to leave a space between the command and question mark.) For example "s?" shows all the keywords starting with "s."

```
Enterprise AP#show s?
snmp sntp station system
Enterprise AP#show s
```

Negating the Effect of Commands

For many configuration commands you can enter the prefix keyword "no" to cancel the effect of a command or reset the configuration to the default value. For example, the **logging** command will log system messages to a host server. To disable logging, specify the **no logging** command. This guide describes the negation effect for all applicable commands.

Using Command History

The CLI maintains a history of commands that have been entered. You can scroll back through the history of commands by pressing the up arrow key. Any command displayed in the history list can be executed again, or first modified and then executed.

Using the **show history** command displays a longer list of recently executed commands.

Understanding Command Modes

The command set is divided into Exec and Configuration classes. Exec commands generally display information on system status or clear statistical counters. Configuration commands, on the other hand, modify interface parameters or enable certain functions. These classes are further divided into different modes. Available commands depend on the selected mode. You can always enter a question mark "?" at the prompt to display a list of the commands available for the current mode. The command classes and associated modes are displayed in the following table:

Class	Mode
Exec	Privileged
Configuration	Global Interface-ethernet Interface-wireless Interface-wireless-vap

Exec Commands

When you open a new console session on an access point, the system enters Exec command mode. Only a limited number of the commands are available in this mode. You can access all other commands only from the configuration mode. To access Exec mode, open a new console session with the user name "admin." The command prompt displays as "Enterprise AP#" for Exec mode.

```
Username: admin
Password: [system login password]
Enterprise AP#
```

Configuration Commands

Configuration commands are used to modify access point settings. These commands modify the running configuration and are saved in memory.

The configuration commands are organized into four different modes:

- Global Configuration (GC) These commands modify the system level configuration, and include commands such as username and password.
- Interface-Ethernet Configuration (IC-E) These commands modify the Ethernet port configuration, and include command such as dns and ip.
- Interface-Wireless Configuration (IC-W) These commands modify the wireless port configuration of global parameters for the radio, and include commands such as channel and transmit-power.
- Interface-Wireless Virtual Access Point Configuration (IC-W-VAP) These commands modify the wireless port configuration for each VAP, and include commands such as ssid and authentication.

To enter the Global Configuration mode, enter the command **configure** in Exec mode. The system prompt will change to "Enterprise AP(config)#" which gives you access privilege to all Global Configuration commands.

```
Enterprise AP#configure
Enterprise AP(config)#
```

To enter Interface mode, you must enter the "interface ethernet," or "interface wireless g" command while in Global Configuration mode. The system prompt will change to "Enterprise AP(if-ethernet)#," or Enterprise AP(if-wireless)" indicating that you have access privileges to the associated commands. You can use the end command to return to the Exec mode.

```
Enterprise AP(config)#interface ethernet
Enterprise AP(if-ethernet)#
```

Command Line Processing

Commands are not case sensitive. You can abbreviate commands and parameters as long as they contain enough letters to differentiate them from any other currently available commands or parameters. You can use the Tab key to complete partial commands, or enter a partial command followed by the "?" character to display a list of possible matches. You can also use the following editing keystrokes for command-line processing:

Table 6-1. Keystroke Commands		
Keystroke	Function	
Ctrl-A	Shifts cursor to start of command line.	
Ctrl-B	Shifts cursor to the left one character.	
Ctrl-C	Terminates a task and displays the command prompt.	
Ctrl-E	Shifts cursor to end of command line.	
Ctrl-F	Shifts cursor to the right one character.	
Ctrl-K	Deletes from cursor to the end of the command line.	
Ctrl-L	Repeats current command line on a new line.	
Ctrl-N	Enters the next command line in the history buffer.	
Ctrl-P	Shows the last command.	
Ctrl-R	Repeats current command line on a new line.	
Ctrl-U	Deletes the entire line.	
Ctrl-W	Deletes the last word typed.	
Esc-B	Moves the cursor backward one word.	
Esc-D	Deletes from the cursor to the end of the word.	
Esc-F	Moves the cursor forward one word.	
Delete key or backspace key	Erases a mistake when entering a command.	

Command Groups

The system commands can be broken down into the functional groups shown below.

Table 6-2. Command Groups		
Command Group	Description	Page
General	Basic commands for entering configuration mode, restarting the system, or quitting the CLI	6-7
System Management	Controls user name, password, web browser management options, and a variety of other system information	6-11
System Logging	Configures system logging parameters	6-27
System Clock	Configures SNTP and system clock settings	6-32
DHCP Relay	Configures the access point to send DHCP requests from clients to specified servers	6-37

	Table 6-2. Command Groups			
Command Group	Description	Page		
SNMP	Configures community access strings and trap managers	6-39		
Flash/File	Manages code image or access point configuration files	6-54		
RADIUS	Configures the RADIUS client used with 802.1X authentication	6-57		
802.1X Authentication	Configures 802.1X authentication	6-64		
MAC Address Authentication	Configures MAC address authentication	6-69		
Filtering	Filters communications between wireless clients, controls access to the management interface from wireless clients, and filters traffic using specific Ethernet protocol types	6-72		
WDS Bridge	Configures WDS forwarding table settings	6-76		
Spanning Tree	Configures spanning tree parameters	6-82		
Ethernet Interface	Configures connection parameters for the Ethernet interface	6-87		
Wireless Interface	Configures radio interface settings	6-92		
Wireless Security	Configures radio interface security and encryption settings	6-108		
Rogue AP Detection	Configures settings for the detection of rogue access points in the network	6-108		
Link Integrity	Configures a link check to a host device on the wired network	6-122		
IAPP	Enables roaming between multi-vendor access points	6-126		
VLANs	Configures VLAN membership	6-127		
WMM	Configures WMM quality of service parameters	6-129		

The access mode shown in the following tables is indicated by these abbreviations: **Exec** (Executive Mode), **GC** (Global Configuration), **IC-E** (Interface-Ethernet Configuration), **IC-W** (Interface-Wireless Configuration), and **IC-W-VAP** (Interface-Wireless VAP Configuration).

General Commands

Table 6-3. General Commands				
Command	Function	Mode	Page	
configure	Activates global configuration mode	Exec	6-8	
end	Returns to previous configuration mode	GC, IC	6-8	
exit	Returns to the previous configuration mode, or exits the CLI	any	6-8	
ping	Sends ICMP echo request packets to another node on the network	Exec	6-9	
reset	Restarts the system	Exec	6-10	
show history	Shows the command history buffer	Exec	6-10	
show line	Shows the configuration settings for the console port	Exec	6-11	

configure

This command activates Global Configuration mode. You must enter this mode to modify most of the settings on the access point. You must also enter Global Configuration mode prior to enabling the context modes for Interface Configuration. See "Using the Command Line Interface" on page 1.

Default Setting

None

Command Mode

Exec

Example

```
Enterprise AP#configure
Enterprise AP(config)#
```

Related Commands

end (6-8)

end

This command returns to the previous configuration mode.

Default Setting

None

Command Mode

Global Configuration, Interface Configuration

Example

This example shows how to return to the Configuration mode from the Interface Configuration mode:

```
Enterprise AP(if-ethernet) #end
Enterprise AP(config) #
```

exit

This command returns to the Exec mode or exits the configuration program.

Default Setting

None

Command Mode

Any

Example

This example shows how to return to the Exec mode from the Interface Configuration mode, and then quit the CLI session:

```
Enterprise AP(if-ethernet)#exit
Enterprise AP#exit
CLI session with the Access Point is now closed
Username:
```

ping

This command sends ICMP echo request packets to another node on the network.

Syntax

```
ping <host_name | ip_address>
```

- · host name Alias of the host.
- · ip address IP address of the host.

Default Setting

None

Command Mode

Exec

Command Usage

- Use the ping command to see if another site on the network can be reached.
- The following are some results of the ping command:
 - Normal response The normal response occurs in one to ten seconds, depending on network traffic.
 - Destination does not respond If the host does not respond, a "timeout" appears in ten seconds.
 - Destination unreachable The gateway for this destination indicates that the destination is unreachable.
 - Network or host unreachable The gateway found no corresponding entry in the route table.
- · Press <Esc> to stop pinging.

```
Enterprise AP#ping 10.1.0.19
192.168.1.19 is alive
Enterprise AP#
```

reset

This command restarts the system or restores the factory default settings.

Syntax

reset <board | configuration>

- · board Reboots the system.
- configuration Resets the configuration settings to the factory defaults, and then reboots the system.

Default Setting

None

Command Mode

Fxec

Command Usage

When the system is restarted, it will always run the Power-On Self-Test.

Example

This example shows how to reset the system:

```
Enterprise AP#reset board
Reboot system now? <y/n>: y
```

show history

This command shows the contents of the command history buffer.

Default Setting

None

Command Mode

Exec

Command Usage

- The history buffer size is fixed at 10 commands.
- Use the up or down arrow keys to scroll through the commands in the history buffer.

Example

In this example, the show history command lists the contents of the command history buffer:

```
Enterprise AP#show history
config
exit
show history
Enterprise AP#
```

show line

This command displays the console port's configuration settings.

Command Mode

Exec

Example

The console port settings are fixed at the values shown below.

```
Enterprise AP#show line
Console Line Information

databits: 8
parity: none
speed: 9600
stop bits: 1

Enterprise AP#
```

System Management Commands

These commands are used to configure the user name, password, system logs, browser management options, clock settings, and a variety of other system information.

Table 6-4. System Management Commands			
Command	Function	Mode	Page
Country Setting		•	•
country	Sets the access point country code	Exec	6-12
Device Designation		•	
prompt	Customizes the command line prompt	GC	6-14
system name	Specifies the host name for the access point	GC	6-14
snmp-server contact	Sets the system contact string	GC	6-40
snmp-server location	Sets the system location string	GC	6-41
Management Access		•	•
username	Configures the user name for management access	GC	6-15
password	Specifies the password for management access	GC	6-15
ip ssh-server enable	Enables the Secure Shell server	IC-E	6-16
ip ssh-server port	Sets the Secure Shell port	IC-E	6-16
ip telnet-server enable	Enables the Telnet server	IC-E	6-17
APmgmtIP	Specifies an IP address or range of addresses allowed access to the management interface	GC	6-20
APmgmtUI	Enables or disables SNMP, Telnet or web management access	GC	6-21
show APmanagement	Shows the AP management configuration	Exec	6-21

	Table 6-4. System Management Commands				
Command	Function	Mode	Page		
Web Server	·		•		
ip http port	Specifies the port to be used by the web browser interface	GC	6-17		
ip http server	Allows the access point to be monitored or configured from a browser	GC	6-18		
ip https port	Specifies the UDP port number used for a secure HTTP connection to the access point's Web interface	GC	6-18		
ip https server	Enables the secure HTTP server on the access point	GC	6-19		
System Status	·				
show system	Displays system information	Exec	6-22		
show version	Displays version information for the system	Exec	6-23		
show config	Displays detailed configuration information for the system	Exec	6-23		
show hardware	Displays the access point's hardware version	Exec	6-27		

country

This command configures the access point's country code, which identifies the country of operation and sets the authorized radio channels.

Syntax

country <country_code>

country_code - A two character code that identifies the country of operation. See the following table for a full list of codes.

Table 6-5. Country Codes							
Country	Code	Country	Code	Country	Code	Country	Code
Albania	AL	Dominican Republic	DO	Kuwait	KW	Romania	RO
Algeria	DZ	Ecuador	EC	Latvia	LV	Russia	RU
Argentina	AR	Egypt	EG	Lebanon	LB	Saudi Arabia	SA
Armenia	AM	Estonia	EE	Liechtenstein	LI	Singapore	SG
Australia	AU	Finland	FI	Lithuania	LT	Slovak Republic	SK
Austria	AT	France	FR	Macao	МО	Spain	ES
Azerbaijan	AZ	Georgia	GE	Macedonia	MK	Sweden	SE
Bahrain	ВН	Germany	DE	Malaysia	MY	Switzerland	СН
Belarus	BY	Greece	GR	Malta	MT	Syria	SY

	Table 6-5. Country Codes						
Country	Code	Country	Code	Country	Code	Country	Code
Belgium	BE	Guatemala	GT	Mexico	MX	Taiwan	TW
		Honduras	HN	Monaco	MC	Thailand	TH
Belize	BZ	Hong Kong	НК	Morocco	MA	Trinidad & Tobago	TT
Bolivia	во	Hungary	HU	Netherlands	NL	Tunisia	TN
Brazil	BR	Iceland	IS	New Zealand	NZ	Turkey	TR
Brunei Darussalam	BN	India	IN	Norway	NO	Ukraine	UA
Bulgaria	BG	Indonesia	ID	Qatar	QA	United Arab Emirates	AE
Canada	CA	Iran	IR	Oman	OM	United Kingdom	GB
Chile	CL	Ireland	IE	Pakistan	PK	United States	US
China	CN	Israel	IL	Panama	PA	Uruguay	UY
Colombia	СО	Italy	IT	Peru	PE	Uzbekistan	UZ
Costa Rica	CR	Japan	JP	Philippines	PH	Yemen	YE
Croatia	HR	Jordan	JO	Poland	PL	Venezuela	VE
Cyprus	CY	Kazakhstan	KZ	Portugal	PT	Vietnam	VN
Czech Republic	CZ	North Korea	KP	Puerto Rico	PR	Zimbabwe	ZW
Denmark	DK	Korea Republic	KR	Slovenia	SI		
Elsalvador	SV	Luxembourg	LU	South Africa	ZA		

Default Setting

US - for units sold in the United States 99 (no country set) - for units sold in other countries

Command Mode

Exec

Command Usage

· If you purchased an access point outside of the United States, the country code must be set before radio functions are enabled.

The available Country Code settings can be displayed by using the country
 command.

Example

```
Enterprise AP#country tw
Enterprise AP#
```

prompt

This command customizes the CLI prompt. Use the **no** form to restore the default prompt.

Syntax

```
prompt <string>
no prompt

string - Any alphanumeric string to use for the CLI prompt.
(Maximum length: 32 characters)
```

Default Setting

Enterprise AP

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #prompt RD2
RD2(config) #
```

system name

This command specifies or modifies the system name for this device. Use the ${f no}$ form to restore the default system name.

Syntax

```
system name <name>
no system name
name - The name of this host.
(Maximum length: 32 characters)
```

Default Setting

Enterprise AP

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #system name AP
Enterprise AP(config) #
```

username

This command configures the user name for management access.

Syntax

```
username < name >
```

```
name - The name of the user.
(Length: 3-16 characters, case sensitive)
```

Default Setting

admin

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #username bob
Enterprise AP(config) #
```

password

After initially logging onto the system, you should set the password. Remember to record it in a safe place. Use the **no** form to reset the default password.

Syntax

```
password <password>
no password

password - Password for management access.
(Length: 3-16 characters, case sensitive)
```

Default Setting

smcadmin

Command Mode

Global Configuration

```
Enterprise AP(config) #password
Enterprise AP(config) #
```

ip ssh-server enable

This command enables the Secure Shell server. Use the **no** form to disable the server.

Syntax

ip ssh-server enable no ip ssh-server

Default Setting

Interface enabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

- The access point supports Secure Shell version 2.0 only.
- After boot up, the SSH server needs about two minutes to generate host encryption keys. The SSH server is disabled while the keys are being generated. The **show system** command displays the status of the SSH server.

Example

```
Enterprise AP(if-ethernet)#ip ssh-server enable
Enterprise AP(if-ethernet)#
```

ip ssh-server port

This command sets the Secure Shell server port. Use the **no** form to disable the server.

Syntax

ip ssh-server port <port-number>

• port-number - The UDP port used by the SSH server. (Range: 1-65535)

Default Setting

22

Command Mode

Interface Configuration (Ethernet)

```
Enterprise AP(if-ethernet)#ip ssh-server port 1124
Enterprise AP(if-ethernet)#
```

ip telnet-server enable

This command enables the Telnet server. Use the **no** form to disable the server.

Syntax

```
ip telnet-server enable no ip telnet-server
```

Default Setting

Interface enabled

Command Mode

Interface Configuration (Ethernet)

Example

```
Enterprise AP(if-ethernet)#ip telnet-server enable
Enterprise AP(if-ethernet)#
```

ip http port

This command specifies the TCP port number used by the web browser interface. Use the **no** form to use the default port.

Syntax

```
ip http port content
no ip http port

port-number - The TCP port to be used by the browser interface.
(Range: 1024-65535)
```

Default Setting

80

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#ip http port 769
Enterprise AP(config)#
```

Related Commands

```
ip http server (6-18)
```

ip http server

This command allows this device to be monitored or configured from a browser. Use the **no** form to disable this function.

Syntax

```
ip http server 
no ip http server
```

Default Setting

Enabled

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#ip http server
Enterprise AP(config)#
```

Related Commands

```
ip http port (6-17)
```

ip https port

Use this command to specify the UDP port number used for HTTPS/SSL connection to the access point's Web interface. Use the **no** form to restore the default port.

Syntax

```
ip https port <port_number>
no ip https port
   port_number - The UDP port used for HTTPS/SSL.
   (Range: 80, 1024-65535)
```

Default Setting

443

Command Mode

Global Configuration

Command Usage

- You cannot configure the HTTP and HTTPS servers to use the same port.
- To avoid using common reserved TCP port numbers below 1024, the configurable range is restricted to 443 and between 1024 and 65535.
- If you change the HTTPS port number, clients attempting to connect to the HTTPS server must specify the port number in the URL, in this format: https://device:port_number

Example

```
Enterprise AP(config)#ip https port 1234
Enterprise AP(config)#
```

ip https server

Use this command to enable the secure hypertext transfer protocol (HTTPS) over the Secure Socket Layer (SSL), providing secure access (i.e., an encrypted connection) to the access point's Web interface. Use the **no** form to disable this function.

Syntax

ip https server no ip https server

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- · Both HTTP and HTTPS service can be enabled independently.
- If you enable HTTPS, you must indicate this in the URL: https://device:port_number]
- · When you start HTTPS, the connection is established in this way:
 - The client authenticates the server using the server's digital certificate.
 - The client and server negotiate a set of security protocols to use for the connection.
 - The client and server generate session keys for encrypting and decrypting data.
- The client and server establish a secure encrypted connection.
 A padlock icon should appear in the status bar for Internet Explorer 5.x.

```
Enterprise AP(config)#ip https server
Enterprise AP(config)#
```

APmgmtIP

This command specifies the client IP addresses that are allowed management access to the access point through various protocols.

Caution: Secure Web (HTTPS) connections are not affected by the UI Management or IP Management settings.

Syntax

APmgmtIP <multiple IP_address subnet_mask | single IP_address | any>

- multiple Adds IP addresses within a specifiable range to the SNMP, web and Telnet groups.
- single Adds an IP address to the SNMP, web and Telnet groups.
- any Allows any IP address access through SNMP, web and Telnet groups.
- IP_address Adds IP addresses to the SNMP, web and Telnet groups.
- subnet_mask Specifies a range of IP addresses allowed management access.

Default Setting

All addresses

Command Mode

Global Configuration

Command Usage

- If anyone tries to access a management interface on the access point from an invalid address, the unit will reject the connection, enter an event message in the system log, and send a trap message to the trap manager.
- IP address can be configured for SNMP, web and Telnet access respectively. Each of these groups can include up to five different sets of addresses, either individual addresses or address ranges.
- When entering addresses for the same group (i.e., SNMP, web or Telnet), the access point will not accept overlapping address ranges. When entering addresses for different groups, the access point will accept overlapping address ranges.
- You cannot delete an individual address from a specified range. You must delete the entire range, and reenter the addresses.
- You can delete an address range just by specifying the start address, or by specifying both the start address and end address.

Example

This example restricts management access to the indicated addresses.

```
Enterprise AP(config)#apmgmtip multiple 192.168.1.50 255.255.255.0
Enterprise AP(config)#
```

APmgmtUI

This command enables and disables management access to the access point through SNMP, Telnet and web interfaces.

Caution: Secure Web (HTTPS) connections are not affected by the UI Management or IP Management settings.

Syntax

APmgmtUI <[SNMP | Telnet | Web] enable | disable>

- SNMP Specifies SNMP management access.
- · Telnet Specifies Telnet management access.
- · Web Specifies web based management access.
 - enable/disable Enables or disables the selected management access method

Default Setting

All enabled

Command Mode

Global Configuration

Example

This example restricts management access to the indicated addresses.

```
Enterprise AP(config)#apmgmtui SNMP enable
Enterprise AP(config)#
```

show apmagement

This command shows the AP management configuration, including the IP addresses of management stations allowed to access the access point, as well as the interface protocols which are open to management access.

Command Mode

Exec

show system

This command displays basic system configuration settings.

Default Setting

None

Command Mode

Exec

```
Enterprise AP#show system
System Information
System Information
______
Serial Number
System Up time : 0 days, 1 hours, 34 minutes, 38 seconds
System Name : Enterprise Wireless AP
System Location
System Contact : Contact
System Country Code : US - UNITED STATES
MAC Address
                 : 00-13-F7-1C-33-66
Radio A MAC Address : 00-13-F7-1C-33-66
Radio G MAC Address : 00-13-F7-1C-33-67
IP Address : 192.168.2.2
Subnet Mask : 255.255.255.0
Default Gateway : 0.0.0.0
VLAN State : DISABLED
Management VLAN ID(AP): 1
TAPP State : ENABLED
DHCP Client : ENABLED
HTTP Server : ENABLED
HTTP Server : ENABLED
HTTP Session Timeout : 300
HTTPS Server : ENABLED : 443
Slot Status
Boot Rom Version
Software Version
                          : Single band(a/g)
                         : v1.1.1
                          : v5.0.0.0
SSH Server
                          : ENABLED
SSH Server Port : 22
Telnet Server : ENABLED
DHCP Relay : DISABLED
______
Enterprise AP#
```

show version

This command displays the software version for the system.

Command Mode

Fxec

Example

```
Enterprise AP#show version
Version Information
_____
Software Version : v5.0.0.0
Date : Feb 8 2006, 17:48:27
BootRom Version : v1.1.1
Hardware version : ROA
_____
Enterprise AP#
```

show config

This command displays detailed configuration information for the system.

Command Mode

Exec

```
Enterprise AP#show config
Authentication Information
______
MAC Authentication Server : DISABLED
MAC Auth Session Timeout Value : 0 min
802.1x supplicant user : EMPTY 802 1x currant
802.1x supplicant password : EMPTY
                      : ALLOWED
Address Filtering
System Default : ALLOW addresses not found in filter table.
Filter Table
No Filter Entries.
Bootfile Information
_____
Bootfile : smc-img.bin
_____
Protocol Filter Information
_____
Local Bridge :DISABLED
AP Management :ENABLED
Ethernet Type Filter : DISABLED
Enabled Protocol Filters
No protocol filters are enabled
_____
```

```
Hardware Version Information
_____
Hardware version R01A
______
Ethernet Interface Information
_____
Operational status : Up
______
Wireless Interface 802.11g Information
______
-----Identification-----
                  : Enterprise 802.11g Access Point
Description
                   : SMC VAP G 0
SSID
Channel
                  : 1 (AUTO)
Antenna Mode
                   : Fixed
                   : Enable
-----802.11 Parameters-----
Radio Mode
                  : 802.11b+q
Transmit Power
                  : 100% (16 dBm)
Data Rate
                  : 54Mbps
Fragmentation Threshold : 2346 bytes
RTS Threshold
                  : 2347 bytes
                  : 100 TUS
Beacon Interval
DTIM Interval
                  : 1 beacon
Maximum Association
                  : 64 stations
Native VLAN ID
                  : 1
-----Security-----
                  : DISABLED
Closed System
Multicast cipher
                     : WEP
Unicast cipher
                      : TKIP and AES
                  : REQUIRED
WPA clients
WPA Key Mgmt Mode
WPA PSK Key Type
                  : PRE SHARED KEY
                  : ALPHANUMERIC
                  : DISABLED
Encryption
Default Transmit Key
                  : 1
Static Keys :
  Key 1: EMPTY Key 2: EMPTY Key 3: EMPTY Key 4: EMPTY
Key Length :
 Key 1: ZERO Key 2: ZERO Key 3: ZERO Key 4: ZERO
Authentication Type : OPEN
Rogue AP Detection : Disab
                  : Disabled
Rogue AP Scan Interval : 720 minutes
Rogue AP Scan Duration : 350 milliseconds
______
Console Line Information
______
 databits : 8
 parity : none speed : 9600
 stop bits : 1
_____
```



```
Logging Information
_____
                                                  : Disabled
Syslog State
Logging Console State
                                                             : Disabled
Logging Level
                                                              : Informational
                                                              : 16
Logging Facility Type
      -. 0.0.0.0 , UDP Port: 514, State: Disabled 2: 0.0.0.0 , UDP Port: 514, State: Disabled 3: 0.0.0.0 , UDP Port: 514, State: Disabled 5: 0.0.0.0 , UDP Port:
Servers
                                              , UDP Port: 514, State: Disabled
, UDP Port: 514, State: Disabled
      4: 0.0.0.0
     Radius Server Information
_____
ΙP
                                           : 0.0.0.0
Port
                                          : 1812
Kev
                                          : 3
Retransmit
Timeout
                                             : 5
Radius MAC format : no-delimiter
Radius VLAN format : HEX
_____
Radius Secondary Server Information
_____
ΙP
                                           : 0.0.0.0
                                           : 1812
Port
                                           : ****
Kev
Retransmit
                                           : 3
Timeout
                                            : 5
Radius MAC format : no-delimiter
Radius VLAN format : HEX
_____
SNMP Information
_____
Service State
                                                                     : Disable
Community (ro)
                                                                      . ******
Community (rw)
Location
Contact
                                                                       : Contact
EngineId :80:00:07:e5:80:00:00:29:f6:00:00:0c
EngineBoots:2
Trap Destinations:
      1:
                                  0.0.0.0, Community: *****, State: Disabled
                                  0.0.0.0, Community: ****, State: Disabled
                                  0.0.0.0, Community: ****, State: Disabled
      3:
                                  0.0.0.0, Community: *****, State: Disabled
       4:
```

```
dot11InterfaceAGFail Enabled
                                     dot11InterfaceBFail Enabled
  dot11StationAssociation Enabled dot11StationAuthentication Enabled
 dot11StationReAssociation Enabled dot11StationRequestFail Enabled
          dot1xAuthFail Enabled
                                   dot1xAuthNotInitiated Enabled
        dot1xAuthSuccess Enabled
                                   dot1xMacAddrAuthFail Enabled
  dot1xMacAddrAuthSuccess Enabled
                                     iappContextDataSent Enabled
   iappStationRoamedFrom Enabled
                                     iappStationRoamedTo Enabled
    localMacAddrAuthFail Enabled pppLogonFail Enabled
                                 localMacAddrAuthSuccess Enabled
                                      sntpServerFail Enabled
                                    radiusServerChanged Enabled
 configFileVersionChanged Enabled
             systemDown Enabled
                                              systemUp Enabled
_____
SNTP Information
______
Service State
                : Disabled
SNTP (server 1) IP : 137.92.140.80
SNTP (server 2) IP : 192.43.244.18
                : 00 : 14, Jan 1st, 1970
Current Time
                 : -5 (BOGOTA, EASTERN, INDIANA)
Time Zone
Daylight Saving : Disabled
______
Station Table Information
_____
if-wireless G VAP [0] :
802.11g Channel: Auto
No 802.11g Channel Stations.
System Information
______
Serial Number
System Up time
                 : 0 days, 0 hours, 16 minutes, 51 seconds
System Name
                 : SMC
System Location
System Contact
                 : Contact
System Country Code : 99 - NO COUNTRY SET
MAC Address
                 : 00-12-CF-05-B7-84
                 : 192.168.0.151
IP Address
                 : 255.255.255.0
Subnet Mask
                 : 192.168.0.1
Default Gateway
VLAN State
                  : DISABLED
Management VLAN ID(AP): 1
                 : ENABLED
IAPP State
DHCP Client
                 : ENABLED
HTTP Server
                 : ENABLED
HTTP Server Port
                 : 80
                 : ENABLED
HTTPS Server
HTTPS Server Port
                 : 443
Slot Status
                 : Single band(a/g)
                 : v3.0.7
Boot Rom Version
Boot Rom Version : v3.0.7
Software Version : v5.0.0.0
```



```
SSH Server
           : ENABLED
SSH Server Port : 22
Telnet Server
           : ENABLED
DHCP Relay
            : DISABLED
______
Version Information
_____
Version: v4.3.2.2
Date : Dec 20 2005, 18:38:12
_____
Enterprise AP#
```

show hardware

This command displays the hardware version of the system.

Command Mode

Exec

Example

```
Enterprise AP#show hardware
Hardware Version Information
_____
Hardware version R01
_____
Enterprise AP#
```

System Logging Commands

These commands are used to configure system logging on the access point.

Table 6-6. System Logging Commands				
Command	Function	Mode	Page	
logging on	Controls logging of error messages	GC	6-28	
logging host	Adds a syslog server host IP address that will receive logging messages	GC	6-28	
logging console	Initiates logging of error messages to the console	GC	6-29	
logging level	Defines the minimum severity level for event logging	GC	6-29	
logging facility-type	Sets the facility type for remote logging of syslog messages	GC	6-30	
logging clear	Clears all log entries in access point memory	GC	6-31	
show logging	Displays the state of logging	Exec	6-31	
show event-log	Displays all log entries in access point memory	Exec	6-32	

logging on

This command controls logging of error messages; i.e., sending debug or error messages to memory. The **no** form disables the logging process.

Syntax

[no] logging on

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

The logging process controls error messages saved to memory. You can use the **logging level** command to control the type of error messages that are stored in memory.

Example

```
Enterprise AP(config) #logging on
Enterprise AP(config) #
```

logging host

This command specifies syslog servers host that will receive logging messages. Use the **no** form to remove syslog server host.

Syntax

logging host <1 | 2 | 3 | 4> <host_name | host_ip_address> [udp_port] no logging host <1 | 2 | 3 | 4>

- 1 First syslog server.
- 2 Second syslog server.
- · 3 Third syslog server.
- 4 Fourth syslog server.
- host_name The name of a syslog server. (Range: 1-20 characters)
- host ip address The IP address of a syslog server.
- *udp port* The UDP port used by the syslog server.

Default Setting

None

Command Mode

Example

```
Enterprise AP(config) #logging host 1 10.1.0.3
Enterprise AP(config) #
```

logging console

This command initiates logging of error messages to the console. Use the **no** form to disable logging to the console.

Syntax

logging console no logging console

Default Setting

Disabled

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#logging console
Enterprise AP(config)#
```

logging level

This command sets the minimum severity level for event logging.

Syntax

```
logging level <Emergency | Alert | Critical | Error | Warning | Notice | Informational | Debug>
```

Default Setting

Informational

Command Mode

Command Usage

Messages sent include the selected level down to Emergency level.

Level Argument	Description
Emergency	System unusable
Alert	Immediate action needed
Critical	Critical conditions (e.g., memory allocation, or free memory error - resource exhausted)
Error	Error conditions (e.g., invalid input, default used)
Warning	Warning conditions (e.g., return false, unexpected return)
Notice	Normal but significant condition, such as cold start
Informational	Informational messages only
Debug	Debugging messages

Example

```
Enterprise AP(config)#logging level alert
Enterprise AP(config)#
```

logging facility-type

This command sets the facility type for remote logging of syslog messages.

Syntax

logging facility-type <type>

type - A number that indicates the facility used by the syslog server to dispatch log messages to an appropriate service. (Range: 16-23)

Default Setting

16

Command Mode

Command Usage

The command specifies the facility type tag sent in syslog messages. (See RFC 3164.) This type has no effect on the kind of messages reported by the access point. However, it may be used by the syslog server to sort messages or to store messages in the corresponding database.

Example

```
Enterprise AP(config) #logging facility 19
Enterprise AP(config) #
```

logging clear

This command clears all log messages stored in the access point's memory.

Syntax

logging clear

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#logging clear
Enterprise AP(config)#
```

show logging

This command displays the logging configuration.

Syntax

show logging

Command Mode

Exec

show event-log

This command displays log messages stored in the access point's memory.

Syntax

show event-log

Command Mode

Exec

Example

```
Enterprise AP#show event-log
Mar 09 11:57:55    Information: 802.11g:11g Radio Interface Enabled
Mar 09 11:57:55    Information: 802.11g:11g Radio Interface Enabled
Mar 09 11:57:34    Information: 802.11g:11g Radio Interface Enabled
Mar 09 11:57:18    Information: 802.11g:11g Radio Interface Enabled
Mar 09 11:55:52    Information: SSH task: Set SSH server port to 22
Mar 09 11:55:52    Information: SSH task: Enable SSH server.
Mar 09 11:55:52    Information: Enable Telnet.
Mar 09 11:55:40    Information: 802.11g:Transmit Power set to QUARTER
Press <n> next.  previous. <a> abort. <y> continue to end:
Enterprise AP#configure
Enter configuration commands, one per line. End with CTRL/Z
Enterprise AP(config) #logging clear
```

System Clock Commands

These commands are used to configure SNTP and system clock settings on the access point.

Table 6-7. System Clock Commands				
Command	Function	Mode	Page	
sntp-server ip	Specifies one or more time servers	GC	6-33	
sntp-server enable	Accepts time from the specified time servers	GC	6-33	
sntp-server date-time	Manually sets the system date and time	GC	6-34	
sntp-server daylight-saving	Sets the start and end dates for daylight savings time	GC	6-35	
sntp-server timezone	Sets the time zone for the access point's internal clock	GC	6-35	
show sntp	Shows current SNTP configuration settings	Exec	6-36	

sntp-server ip

This command sets the IP address of the servers to which SNTP time requests are issued. Use the this command with no arguments to clear all time servers from the current list

Syntax

```
sntp-server ip <1 | 2> <ip>
```

- 1 First time server.
- · 2 Second time server.
- ip IP address of an time server (NTP or SNTP).

Default Setting

137.92.140.80 192.43.244.18

Command Mode

Global Configuration

Command Usage

When SNTP client mode is enabled using the **sntp-server enable** command, the **sntp-server ip** command specifies the time servers from which the access point polls for time updates. The access point will poll the time servers in the order specified until a response is received.

Example

```
Enterprise AP(config)#sntp-server ip 10.1.0.19
Enterprise AP#
```

Related Commands

```
sntp-server enable (6-33) show sntp (6-36)
```

sntp-server enable

This command enables SNTP client requests for time synchronization with NTP or SNTP time servers specified by the **sntp-server ip** command. Use the **no** form to disable SNTP client requests.

Syntax

```
sntp-server enable no sntp-server enable
```

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

The time acquired from time servers is used to record accurate dates and times for log events. Without SNTP, the access point only records the time starting from the factory default set at the last bootup (i.e., 00:14:00, January 1, 1970).

Example

```
Enterprise AP(config) #sntp-server enable
Enterprise AP(config) #
```

Related Commands

```
sntp-server ip (6-33)
show sntp (6-36)
```

sntp-server date-time

This command sets the system clock.

Default Setting

00:14:00, January 1, 1970

Command Mode

Global Configuration

Example

This example sets the system clock to 17:37 June 19, 2003.

```
Enterprise AP(config) #sntp-server date-time
Enter Year<1970-2100>: 2003
Enter Month<1-12>: 6
Enter Day<1-31>: 19
Enter Hour<0-23>: 17
Enter Min<0-59>: 37
Enterprise AP(config) #
```

Related Commands

```
sntp-server enable (6-33)
```

sntp-server daylight-saving

This command sets the start and end dates for daylight savings time. Use the **no** form to disable daylight savings time.

Syntax

```
sntp-server daylight-saving no sntp-server daylight-saving
```

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

The command sets the system clock back one hour during the specified period.

Example

This sets daylight savings time to be used from July 1st to September 1st.

```
Enterprise AP(config) #sntp-server daylight-saving
Enter Daylight saving from which month<1-12>: 6
and which day<1-31>: 1
Enter Daylight saving end to which month<1-12>: 9
and which day<1-31>: 1
Enterprise AP(config) #
```

sntp-server timezone

This command sets the time zone for the access point's internal clock.

Syntax

```
sntp-server timezone <hours>
```

```
hours - Number of hours before/after UTC. (Range: -12 to +12 hours)
```

Default Setting

```
-5 (BOGOTA, EASTERN, INDIANA)
```

Command Mode

Command Usage

This command sets the local time zone relative to the Coordinated Universal Time (UTC, formerly Greenwich Mean Time or GMT), based on the earth's prime meridian, zero degrees longitude. To display a time corresponding to your local time, you must indicate the number of hours and minutes your time zone is east (before) or west (after) of UTC.

Example

```
Enterprise AP(config) #sntp-server timezone +8
Enterprise AP(config) #
```

show sntp

This command displays the current time and configuration settings for the SNTP client.

Command Mode

Exec

DHCP Relay Commands

Dynamic Host Configuration Protocol (DHCP) can dynamically allocate an IP address and other configuration information to network clients that broadcast a request. To receive the broadcast request, the DHCP server would normally have to be on the same subnet as the client. However, when the access point's DHCP relay agent is enabled, received client requests can be forwarded directly by the access point to a known DHCP server on another subnet. Responses from the DHCP server are returned to the access point, which then broadcasts them back to clients.

Table 6-8. DHCP Relay Commands			
Command	Function	Mode	Page
dhcp-relay enable	Enables the DHCP relay agent	GC	6-37
dhcp-relay	Sets the primary and secondary DHCP server address	GC	6-38
show dhcp-relay	Shows current DHCP relay configuration settings	Exec	6-38

dhcp-relay enable

This command enables the access point's DHCP relay agent. Use the **no** form to disable the agent.

Syntax

[no] dhcp-relay enable

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- For the DHCP relay agent to function, the primary DHCP server must be configured using the dhcp-relay primary command. A secondary DHCP server does not need to be configured, but it is recommended.
- If there is no response from the primary DHCP server, and a secondary server has been configured, the agent will then attempt to send DHCP requests to the secondary server.

```
Enterprise AP(config)#dhcp-relay enable
Enterprise AP(config)#
```

dhcp-relay

This command configures the primary and secondary DHCP server addresses.

Syntax

dhcp-relay <primary | secondary> <ip_address>

- · primary The primary DHCP server.
- · secondary The secondary DHCP server.
- · ip address IP address of the server.

Default Setting

Primary and secondary: 0.0.0.0

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#dhcp-relay primary 192.168.1.10
Enterprise AP(config)#
```

show dhcp-relay

This command displays the current DHCP relay configuration.

Command Mode

Exec

```
Enterprise AP#show dhcp-relay
DHCP Relay : ENABLED
Primary DHCP Server : 192.168.1.10
Secondary DHCP Server : 0.0.0.0
Enterprise AP#
```

SNMP Commands

Controls access to this access point from management stations using the Simple Network Management Protocol (SNMP), as well as the hosts that will receive trap messages.

Table 6-9. SNMP Commands				
Command	Function	Mode	Page	
snmp-server community	Sets up the community access string to permit access to SNMP commands	GC	6-40	
snmp-server contact	Sets the system contact string	GC	6-40	
snmp-server location	Sets the system location string	GC	6-41	
snmp-server enable server	Enables SNMP service and traps	GC	6-41	
snmp-server host	Specifies the recipient of an SNMP notification operation	GC	6-42	
snmp-server trap	Enables specific SNMP notifications	GC	6-43	
snmp-server engine id	Sets the engine ID for SNMP v3	GC	6-45	
snmp-server user	Sets the name of the SNMP v3 user	GC	6-45	
snmp-server targets	Configures SNMP v3 notification targets	GC	6-47	
snmp-server filter	Configures SNMP v3 notification filters	GC	6-48	
snmp-server filter-assignments	Assigns SNMP v3 notification filters to targets	GC	6-49	
show snmp groups	Displays the pre-defined SNMP v3 groups	Exec	6-49	
show snmp users	Displays SNMP v3 user settings	Exec	6-50	
show snmp group-assignments	Displays the assignment of users to SNMP v3 groups	Exec	6-50	
show snmp target	Displays the SNMP v3 notification targets	Exec	6-51	
show snmp filter	Displays the SNMP v3 notification filters	Exec	6-51	
show snmp filter-assignments	Displays the SNMP v3 notification filter assignments	Exec	6-52	
show snmp	Displays the status of SNMP communications	Exec	6-53	

snmp-server community

This command defines the community access string for the Simple Network Management Protocol. Use the **no** form to remove the specified community string.

Syntax

snmp-server community string [ro | rw] no snmp-server community string

- string Community string that acts like a password and permits access to the SNMP protocol. (Maximum length: 23 characters, case sensitive)
- ro Specifies read-only access. Authorized management stations are only able to retrieve MIB objects.
- rw Specifies read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

Default Setting

- public Read-only access. Authorized management stations are only able to retrieve MIB objects.
- private Read/write access. Authorized management stations are able to both retrieve and modify MIB objects.

Command Mode

Global Configuration

Command Usage

If you enter a community string without the **ro** or **rw** option, the default is read only.

Example

```
Enterprise AP(config)#snmp-server community alpha rw
Enterprise AP(config)#
```

snmp-server contact

This command sets the system contact string. Use the **no** form to remove the system contact information.

Syntax

```
snmp-server contact string no snmp-server contact
```

string - String that describes the system contact. (Maximum length: 255 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#snmp-server contact Paul
Enterprise AP(config)#
```

Related Commands

snmp-server location (6-41)

snmp-server location

This command sets the system location string. Use the **no** form to remove the location string.

Syntax

```
snmp-server location <text>
no snmp-server location
```

text - String that describes the system location. (Maximum length: 255 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#snmp-server location WC-19
Enterprise AP(config)#
```

Related Commands

snmp-server contact (6-40)

snmp-server enable server

This command enables SNMP management access and also enables this device to send SNMP traps (i.e., notifications). Use the **no** form to disable SNMP service and trap messages.

Syntax

snmp-server enable server no snmp-server enable server

Default Setting

Enabled

6 Command Line Interface

Command Mode

Global Configuration

Command Usage

- This command enables both authentication failure notifications and link-up-down notifications.
- The snmp-server host command specifies the host device that will receive SNMP notifications.

Example

```
Enterprise AP(config)#snmp-server enable server
Enterprise AP(config)#
```

Related Commands

snmp-server host (6-42)

snmp-server host

This command specifies the recipient of an SNMP notification. Use the **no** form to remove the specified host.

Syntax

```
snmp-server host <1 | 2 | 3 | 4> <host_ip_address | host_name>
  <community-string>
```

no snmp-server host

- 1 First SNMP host.
- · 2 Second SNMP host.
- 3 Third SNMP host.
- 4 Fourth SNMP host.
- host_ip_address IP of the host (the targeted recipient).
- host_name Name of the host. (Range: 1-63 characters)
- community-string Password-like community string sent with the
 notification operation. Although you can set this string using the
 snmp-server host command by itself, we recommend that you define this
 string using the snmp-server community command prior to using the
 snmp-server host command. (Maximum length: 23 characters)

Default Setting

Host Address: None Community String: public

Command Mode

Command Usage

The **snmp-server host** command is used in conjunction with the **snmp-server enable server** command to enable SNMP notifications.

Example

```
Enterprise AP(config)#snmp-server host 1 10.1.19.23 batman
Enterprise AP(config)#
```

Related Commands

snmp-server enable server (6-41)

snmp-server trap

This command enables the access point to send specific SNMP traps (i.e., notifications). Use the **no** form to disable specific trap messages.

Syntax

snmp-server trap <trap>
no snmp-server trap <trap>

- trap One of the following SNMP trap messages:
 - **sysSystemUp** The access point is up and running.
 - **sysSystemDown** The access point is about to shutdown and reboot.
 - sysRadiusServerChanged The access point has changed from the primary RADIUS server to the secondary, or from the secondary to the primary.
 - sysConfigFileVersionChanged The access point's configuration file has been changed.
 - dot11StationAssociation A client station has successfully associated with the access point.
 - dot11StationReAssociation A client station has successfully re-associated with the access point.
 - dot11StationAuthentication A client station has been successfully authenticated.
 - dot11StationRequestFail A client station has failed association, re-association, or authentication.
 - dot11InterfaceBFail The 802.11b interface has failed.
 - dot1xMacAddrAuthSuccess A client station has successfully authenticated its MAC address with the RADIUS server.
 - dot1xMacAddrAuthFail A client station has failed MAC address authentication with the RADIUS server.
 - dot1xAuthNotInitiated A client station did not initiate 802.1X authentication.
 - dot1xAuthSuccess A 802.1X client station has been successfully authenticated by the RADIUS server.

6 Command Line Interface

- dot1xAuthFail A 802.1X client station has failed RADIUS authentication.
- dot1xSuppAuthenticated A supplicant station has been successfully authenticated by the RADIUS server
- localMacAddrAuthSuccess A client station has successfully authenticated its MAC address with the local database on the access point.
- localMacAddrAuthFail A client station has failed authentication with the local MAC address database on the access point.
- iappStationRoamedFrom A client station has roamed from another access point (identified by its IP address).
- iappStationRoamedTo A client station has roamed to another access point (identified by its IP address).
- iappContextDataSent A client station's Context Data has been sent to another access point with which the station has associated.
- sntpServerFail The access point has failed to set the time from the configured SNTP server.
- wirelessExternalAntenna An external antenna has been enabled.
- dot11WirelessStationDeauthenticate A client station has de-authenticated from the network.
- dot11StationDisassociate A client station no longer associates with the network.
- dot11StationAuthenticateFail A client station has tried and failed to authenticate to the network.

Default Setting

All traps enabled

Command Mode

Global Configuration

Command Usage

This command is used in conjunction with the **snmp-server host** and **snmp-server enable server** commands to enable SNMP notifications.

Example

Enterprise AP(config)#no snmp-server trap dot11StationAssociation Enterprise AP(config)#

snmp-server engine-id

This command is used for SNMP v3. It is used to uniquely identify the access point among all access points in the network. Use the **no** form to delete the engine ID.

Syntax

```
snmp-server engine-id <engine-id>
no snmp-server engine-id
```

engine-id - Enter engine-id in hexadecimal (5-32 characters).

Default Setting

Enabled

Command Mode

Global Configuration

Command Usage

- This command is used in conjunction with the snmp-server user command.
- Entering this command invalidates all engine IDs that have been previously configured.
- If the engineID is deleted or changed, all SNMP users will be cleared. You
 will need to reconfigure all existing users

Example

```
Enterprise AP(config) #snmp-server engine-id la:2b:3c:4d:00:ff
Enterprise AP(config) #
```

snmp-server user

This command configures the SNMP v3 users that are allowed to manage the access point. Use the **no** form to delete an SNMP v3 user.

Syntax

snmp-server user <user-name>

user-name - A user-defined string for the SNMP user. (32 characters maximum)

Default Setting

None

Command Mode

Global Configuration

Command Usage

Up to 10 SNMPv3 users can be configured on the access point.

6 Command Line Interface

- The SNMP engine ID is used to compute the authentication/privacy digests from the pass phrase. You should therefore configure the engine ID with the snmp-server engine-id command before using this configuration command.
- The access point enables SNMP v3 users to be assigned to three pre-defined groups. Other groups cannot be defined. The available groups are:
 - RO A read-only group using no authentication and no data encryption.
 Users in this group use no security, either authentication or encryption, in SNMP messages they send to the agent. This is the same as SNMP v1 or SNMP v2c.
 - RWAuth A read/write group using authentication, but no data encryption. Users in this group send SNMP messages that use an MD5 key/password for authentication, but not a DES key/password for encryption.
 - RWPriv A read/write group using authentication and data encryption.
 Users in this group send SNMP messages that use an MD5 key/ password for authentication and a DES key/password for encryption.
 Both the MD5 and DES key/passwords must be defined.
- The command prompts for the following information to configure an SNMP v3 user:
 - user-name A user-defined string for the SNMP user. (32 characters maximum)
 - group-name The name of the SNMP group to which the user is assigned (32 characters maximum). There are three pre-defined groups: RO, RWAuth, or RWPriv.
 - auth-proto The authentication type used for user authentication: md5 or none.
 - auth-passphrase The user password required when authentication is used (8 – 32 characters).
 - priv-proto The encryption type used for SNMP data encryption: des or none.
 - priv-passphrase The user password required when data encryption is used (8 – 32 characters).
- Users must be assigned to groups that have the same security levels. If a
 user who has "AuthPriv" security (uses authentication and encryption) is
 assigned to a read-only (RO) group, the user will not be able to access the
 database. An AuthPriv user must be assigned to the RWPriv group with the
 AuthPriv security level.
- To configure a user for the RWAuth group, you must include the *auth-proto* and *auth-passphrase* keywords.
- To configure a user for the RWPriv group, you must include the auth-proto, auth-passphrase, priv-proto, and priv-passphrase keywords.

Example

```
Enterprise AP(config) #snmp-server user
User Name<1-32> :chris
Group Name<1-32> :RWPriv
Authtype (md5, <cr>none) :md5
Passphrase<8-32>:a good secret
Privacy(des, <cr>none) :des
Passphrase<8-32>:a very good secret
Enterprise AP(config) #
```

snmp-server targets

This command configures SNMP v3 notification targets. Use the **no** form to delete an SNMP v3 target.

Syntax

```
snmp-server targets <target-id> <ip-addr> <sec-name>
  [version {3}] [udp-port {port-number}] [notification-type
  {TRAP}]
```

no snmp-server targets <target-id>

- target-id A user-defined name that identifies a receiver of SNMP notifications. (Maximum length: 32 characters)
- ip-addr Specifies the IP address of the management station to receive notifications.
- sec-name The defined SNMP v3 user name that is to receive notifications.
- version The SNMP version of notifications. Currently only version 3 is supported in this command.
- udp-port The UDP port that is used on the receiving management station for notifications.
- notification-type The type of notification that is sent. Currently only TRAP is supported.

Default Setting

None

Command Mode

Global Configuration

Command Usage

- The access point supports up to 10 SNMP v3 target IDs.
- The SNMP v3 user name that is specified in the target must first be configured using the snmp-server user command.

```
Enterprise AP(config)#snmp-server targets mytraps 192.168.1.33 chris
Enterprise AP(config)#
```

snmp-server filter

This command configures SNMP v3 notification filters. Use the **no** form to delete an SNMP v3 filter or remove a subtree from a filter.

Syntax

```
snmp-server filter <filter-id> <include | exclude> <subtree>
[mask {mask}]
```

no snmp-server filter <filter-id> [subtree]

- filter-id A user-defined name that identifies an SNMP v3 notification filter. (Maximum length: 32 characters)
- include Defines a filter type that includes objects in the MIB subtree.
- exclude Defines a filter type that excludes objects in the MIB subtree.
- subtree The part of the MIB subtree that is to be filtered.
- mask An optional hexadecimal value bit mask to define objects in the MIB subtree

Default Setting

None

Command Mode

Global Configuration

Command Usage

- The access point allows up to 10 notification filters to be created. Each filter can be defined by up to 20 MIB subtree ID entries.
- Use the command more than once with the same filter ID to build a filter that
 includes or excludes multiple MIB objects. Note that the filter entries are
 applied in the sequence that they are defined.
- The MIB subtree must be defined in the form ".1.3.6.1" and always start with a ".".
- The mask is a hexadecimal value with each bit masking the corresponding ID in the MIB subtree. A "1" in the mask indicates an exact match and a "0" indicates a "wild card." For example, a mask value of 0xFFBF provides a bit mask "1111 1111 1011 1111." If applied to the subtree
 - 1.3.6.1.2.1.2.2.1.1.23, the zero corresponds to the 10th subtree ID. When there are more subtree IDs than bits in the mask, the mask is padded with ones.

```
Enterprise AP(config)#snmp-server filter trapfilter include .1
Enterprise AP(config)#snmp-server filter trapfilter exclude
.1.3.6.1.2.1.2.2.1.1.23
```

snmp-server filter-assignments

This command assigns SNMP v3 notification filters to targets. Use the **no** form to remove an SNMP v3 filter assignment.

Syntax

snmp-server filter-assignments <target-id> <filter-id> no snmp-server filter-assignments <target-id>

- target-id A user-defined name that identifies a receiver of SNMP notifications. (Maximum length: 32 characters)
- filter-id A user-defined name that identifies an SNMP v3 notification filter. (Maximum length: 32 characters)

Default Setting

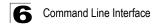
None

Command Mode

Global Configuration

Example

show snmp groups


This command displays the SNMP v3 pre-defined groups.

Syntax

show snmp groups

Command Mode

Exec

Example

```
Enterprise AP#show snmp groups

GroupName :RO
SecurityModel :USM
SecurityLevel :NoAuthNoPriv

GroupName :RWAuth
SecurityModel :USM
SecurityLevel :AuthNoPriv

GroupName :RWPriv
SecurityModel :USM
SecurityModel :USM
SecurityModel :USM
SecurityLevel :AuthPriv
Enterprise AP#
```

show snmp users

This command displays the SNMP v3 users and settings.

Syntax

show snmp users

Command Mode

Exec

Example

show snmp group-assignments

This command displays the SNMP v3 user group assignments.

Syntax

show snmp group-assignments

Command Mode

Exec

Example

```
Enterprise AP#show snmp group-assignments

GroupName :RWPriv
UserName :chris
Enterprise AP#

Enterprise AP#
```

show snmp target

This command displays the SNMP v3 notification target settings.

Syntax

show snmp target

Command Mode

Exec

Example

show snmp filter

This command displays the SNMP v3 notification filter settings.

Syntax

show snmp filter [filter-id]

 filter-id - A user-defined name that identifies an SNMP v3 notification filter. (Maximum length: 32 characters)

Command Mode

Exec

show snmp filter-assignments

This command displays the SNMP v3 notification filter assignments.

Syntax

show snmp filter-assignments

Command Mode

Exec

Example

Enterprise AP#show snmp filter-assignments

HostID FilterID

mytraps trapfilter
Enterprise AP#

show snmp

This command displays the SNMP configuration settings.

Command Mode

Exec

```
Enterprise AP#show snmp
SNMP Information
_____
Service State
                            : Disable
                            : ******
Community (ro)
                            : ******
Community (rw)
Location
                            : R&D 2
Contact
                            : David
EngineId :80:00:07:e5:80:00:00:27:04:00:00:08
EngineBoots:3
Trap Destinations:
  1: 0.0.0.0, Community: ****, State: Disabled
              0.0.0.0, Community: *****, State: Disabled
              0.0.0.0, Community: *****, State: Disabled
              0.0.0.0, Community: *****, State: Disabled
                 systemUp Enabled
                                                     systemDown Enabled
      radiusServerChanged Enabled configFileVersionChanged Enabled sntpServerFail Enabled dot11StationAssociation Enabled
dot11StationReAssociation Enabled dot11StationRequestFail Enabled dot1XMacAddrAuthFail Enabled dot1XMacAddrAuthNotInitiated Enabled
         dot1XAuthSuccess Enabled
                                                  dot1XAuthFail Enabled
                                         localMacAddrAuthFail Enabled
  localMacAddrAuthSuccess Enabled
    iappStationRoamedFrom Enabled
                                          iappStationRoamedTo Enabled
      iappContextDataSent Enabled
                                       dot1XSuppAuthenticated Enabled
  wirelessExternalAntenna Enabled
                                        dot11InterfaceAFail Enabled
      dot11InterfaceGFail Enabled
_____
Enterprise AP#
```

Flash/File Commands

These commands are used to manage the system code or configuration files.

Table 6-10. Flash/File Commands			
Command	Function	Mode	Page
bootfile	Specifies the file or image used to start up the system	GC	6-54
сору	Copies a code image or configuration between flash memory and a FTP/TFTP server	Exec	6-55
delete	Deletes a file or code image	Exec	6-56
dir	Displays a list of files in flash memory	Exec	6-57
show bootfile	Displays the name of the current operation code file that booted the system	Exec	6-57

bootfile

This command specifies the image used to start up the system.

Syntax

bootfile <filename>

filename - Name of the image file.

Default Setting

None

Command Mode

Exec

Command Usage

- The file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names is 32 characters. (Valid characters: A-Z, a-z, 0-9, ".", "-", "_")
- · If the file contains an error, it cannot be set as the default file.

Example

Enterprise AP#bootfile -img.bin
Enterprise AP#

copy

This command copies a boot file, code image, or configuration file between the access point's flash memory and a FTP/TFTP server. When you save the configuration settings to a file on a FTP/TFTP server, that file can later be downloaded to the access point to restore system operation. The success of the file transfer depends on the accessibility of the FTP/TFTP server and the quality of the network connection.

Syntax

```
copy <ftp | tftp> file
copy config <ftp | tftp>
```

- ftp Keyword that allows you to copy to/from an FTP server.
- tftp Keyword that allows you to copy to/from a TFTP server.
- file Keyword that allows you to copy to/from a flash memory file.
- config Keyword that allows you to upload the configuration file from flash memory.

Default Setting

None

Command Mode

Exec

Command Usage

- The system prompts for data required to complete the copy command.
- Only a configuration file can be uploaded to an FTP/TFTP server, but every type of file can be downloaded to the access point.
- The destination file name should not contain slashes (\ or /), the leading letter of the file name should not be a period (.), and the maximum length for file names on the FTP/TFTP server is 255 characters or 32 characters for files on the access point. (Valid characters: A-Z, a-z, 0-9, ".", "-", "")
- Due to the size limit of the flash memory, the access point supports only two
 operation code files.
- The system configuration file must be named "syscfg" in all copy commands.

Example

The following example shows how to upload the configuration settings to a file on the TFTP server:

```
Enterprise AP#copy config tftp
TFTP Source file name:syscfg
TFTP Server IP:192.168.1.19
Enterprise AP#
```

The following example shows how to download a configuration file:

```
Enterprise AP#copy tftp file

1. Application image

2. Config file

3. Boot block image
Select the type of download<1,2,3>: [1]:2
TFTP Source file name:syscfg
TFTP Server IP:192.168.1.19
Enterprise AP#
```

delete

This command deletes a file or image.

Syntax

delete <filename>

filename - Name of the configuration file or image name.

Default Setting

None

Command Mode

Exec

Caution: Beware of deleting application images from flash memory. At least one application image is required in order to boot the access point. If there are multiple image files in flash memory, and the one used to boot the access point is deleted, be sure you first use the **bootfile** command to update the application image file booted at startup before you reboot the access point.

Example

This example shows how to delete the test.cfg configuration file from flash memory.

```
Enterprise AP#delete test.cfg
Are you sure you wish to delete this file? <y/n>:
Enterprise AP#
```

Related Commands

```
bootfile (6-54)
dir (6-57)
```

dir

This command displays a list of files in flash memory.

Command Mode

Exec

Command Usage

File information is shown below:

Column Heading	Description
File Name	The name of the file.
Туре	(2) Operation Code and (5) Configuration file
File Size	The length of the file in bytes.

Example

The following example shows how to display all file information:

show bootfile

This command displays the name of the current operation code file that booted the system.

Syntax

show snmp filter-assignments

Command Mode

Exec

```
Enterprise AP#show bootfile

Bootfile Information

Bootfile: smc-img.bin

Enterprise AP#
```

RADIUS Client

Remote Authentication Dial-in User Service (RADIUS) is a logon authentication protocol that uses software running on a central server to control access for RADIUS-aware devices to the network. An authentication server contains a database of credentials, such as users names and passwords, for each wireless client that requires access to the access point.

Table 6-11. RADIUS Client			
Command	Function	Mode	Page
radius-server address	Specifies the RADIUS server	GC	6-58
radius-server port	Sets the RADIUS server network port	GC	6-59
radius-server key	Sets the RADIUS encryption key	GC	6-59
radius-server retransmit	Sets the number of retries	GC	6-60
radius-server timeout	Sets the interval between sending authentication requests	GC	6-60
radius-server port-accounting	Sets the RADIUS Accounting server network port	GC	6-61
radius-server timeout-interim	Sets the interval between transmitting accounting updates to the RADIUS server	GC	6-61
radius-server radius-mac-format	Sets the format for specifying MAC addresses on the RADIUS server	GC	6-62
radius-server vlan-format	Sets the format for specifying VLAN IDs on the RADIUS server	GC	6-62
show radius	Shows the current RADIUS settings	Exec	6-63

radius-server address

This command specifies the primary and secondary RADIUS servers.

Syntax

radius-server [secondary] address < host_ip_address | host_name>

- secondary Secondary server.
- · host ip address IP address of server.
- host name Host name of server. (Range: 1-20 characters)

Default Setting

None

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #radius-server address 192.168.1.25
Enterprise AP(config) #
```

radius-server port

This command sets the RADIUS server network port.

Syntax

radius-server [secondary] port <port number>

- · secondary Secondary server.
- port_number RADIUS server UDP port used for authentication messages. (Range: 1024-65535)

Default Setting

1812

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #radius-server port 181
Enterprise AP(config) #
```

radius-server key

This command sets the RADIUS encryption key.

Syntax

radius-server [secondary] key <key_string>

- · secondary Secondary server.
- key_string Encryption key used to authenticate logon access for client. Do
 not use blank spaces in the string. (Maximum length: 20 characters)

Default Setting

DEFAULT

Command Mode

Global Configuration

```
Enterprise AP(config) #radius-server key green
Enterprise AP(config) #
```

radius-server retransmit

This command sets the number of retries.

Syntax

radius-server [secondary] retransmit number_of_retries

- · secondary Secondary server.
- number_of_retries Number of times the access point will try to authenticate logon access via the RADIUS server. (Range: 1 - 30)

Default Setting

3

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #radius-server retransmit 5
Enterprise AP(config) #
```

radius-server timeout

This command sets the interval between transmitting authentication requests to the RADIUS server.

Syntax

radius-server [secondary] timeout number_of_seconds

- · secondary Secondary server.
- number_of_seconds Number of seconds the access point waits for a reply before resending a request. (Range: 1-60)

Default Setting

5

Command Mode

Global Configuration

```
Enterprise AP(config) #radius-server timeout 10
Enterprise AP(config) #
```

radius-server port-accounting

This command sets the RADIUS Accounting server network port.

Syntax

radius-server [secondary] port-accounting <port_number>

- secondary Secondary server. If secondary is not specified, then the access point assumes you are configuring the primary RADIUS server.
- port_number RADIUS Accounting server UDP port used for accounting messages.

(Range: 0 or 1024-65535)

Default Setting

0 (disabled)

Command Mode

Global Configuration

Command Usage

 When the RADIUS Accounting server UDP port is specified, a RADIUS accounting session is automatically started for each user that is successfully authenticated to the access point.

Example

```
Enterprise AP(config) #radius-server port-accounting 1813
Enterprise AP(config) #
```

radius-server timeout-interim

This command sets the interval between transmitting accounting updates to the RADIUS server.

Syntax

radius-server [secondary] timeout-interim <number_of_seconds>

- · secondary Secondary server.
- number_of_seconds Number of seconds the access point waits between transmitting accounting updates. (Range: 60-86400)

Default Setting

3600

Command Mode

Global Configuration

Command Usage

 The access point sends periodic accounting updates after every interim period until the user logs off and a "stop" message is sent.

Example

```
Enterprise AP(config) #radius-server timeout-interim 500
Enterprise AP(config) #
```

radius-server radius-mac-format

This command sets the format for specifying MAC addresses on the RADIUS server.

Syntax

radius-server radius-mac-format <multi-colon | multi-dash | no-delimiter | single-dash>

- multi-colon Enter MAC addresses in the form xx:xx:xx:xx:xx:xx.
- multi-dash Enter MAC addresses in the form xx-xx-xx-xx-xx.
- · no-delimiter Enter MAC addresses in the form xxxxxxxxxxxx.
- single-dash Enter MAC addresses in the form xxxxxx-xxxxxx.

Default Setting

No delimiter

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#radius-server radius-mac-format multi-dash
Enterprise AP(config)#
```

radius-server vlan-format

This command sets the format for specifying VLAN IDs on the RADIUS server.

Syntax

radius-server vlan-format <hex | ascii>

- hex Enter VLAN IDs as a hexadecimal number.
- · ascii Enter VLAN IDs as an ASCII string.

Default Setting

Hex

Command Mode

Global Configuration

```
Enterprise AP(config) #radius-server vlan-format ascii
Enterprise AP(config) #
```

show radius

This command displays the current settings for the RADIUS server.

Default Setting

None

Command Mode

Exec

```
Enterprise AP#show radius
Radius Server Information
_____
Status
           : Disabled
IP
           : 0.0.0.0
           : 1812
Port
Retransmit : 3
Timeout
Accounting Port: 0 (Disabled)
InterimUpdate : 3600
Accounting Server State : DOWN
Radius MAC format : no-delimiter
Radius VLAN format : HEX
_____
Radius Secondary Server Information
_____
Status
            : Disabled
           : 0.0.0.0
: 1812
ΙP
Port
           : ****
Key
Retransmit : 3
Timeout
           : 5
Accounting Port: 0 (Disabled)
InterimUpdate : 3600
Accounting Server State : DOWN
Radius MAC format : no-delimiter
Radius VLAN format : HEX
_____
Enterprise AP#
```

802.1X Authentication

The access point supports IEEE 802.1X access control for wireless clients. This control feature prevents unauthorized access to the network by requiring an 802.1X client application to submit user credentials for authentication. Client authentication is then verified by a RADIUS server using EAP (Extensible Authentication Protocol) before the access point grants client access to the network. The 802.1X EAP packets are also used to pass dynamic unicast session keys and static broadcast keys to wireless clients.

Table 6-12. 802.1X Authentication			
Command	Function	Mode	Page
802.1x	Configures 802.1X as disabled, supported, or required	IC-W-VAP	6-64
802.1x broadcast-key- refresh-rate	Sets the interval at which the primary broadcast keys are refreshed for stations using 802.1X dynamic keying	IC-W-VAP	6-65
802.1x session-key- refresh-rate	Sets the interval at which unicast session keys are refreshed for associated stations using dynamic keying	IC-W-VAP	6-66
802.1x session-timeout	Sets the timeout after which a connected client must be re-authenticated	IC-W-VAP	6-66
802.1x-supplicant enable	Enables the access point to operate as a 802.1X supplicant	GC	6-67
802.1x-supplicant user	Sets the supplicant user name and password for the access point	GC	6-67
show authentication	Shows all 802.1X authentication settings, as well as the address filter table	Exec	6-67

802.1x

This command configures 802.1X as optionally supported or as required for wireless clients. Use the **no** form to disable 802.1X support.

Syntax

802.1x <supported | required> no 802.1x

- supported Authenticates clients that initiate the 802.1X authentication process. Uses standard 802.11 authentication for all others.
- required Requires 802.1X authentication for all clients.

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- When 802.1X is disabled, the access point does not support 802.1X authentication for any station. After successful 802.11 association, each client is allowed to access the network.
- When 802.1X is supported, the access point supports 802.1X authentication only for clients initiating the 802.1X authentication process (i.e., the access point does NOT initiate 802.1X authentication). For stations initiating 802.1X, only those stations successfully authenticated are allowed to access the network. For those stations not initiating 802.1X, access to the network is allowed after successful 802.11 association.
- When 802.1X is required, the access point enforces 802.1X authentication for all 802.11 associated stations. If 802.1X authentication is not initiated by the station, the access point will initiate authentication. Only those stations successfully authenticated with 802.1X are allowed to access the network.
- 802.1X does not apply to the 10/100Base-TX port.

Example

```
Enterprise AP(config)#802.1x supported
Enterprise AP(config)#
```

802.1x broadcast-key-refresh-rate

This command sets the interval at which the broadcast keys are refreshed for stations using 802.1X dynamic keying.

Syntax

802.1x broadcast-key-refresh-rate < rate>

```
rate - The interval at which the access point rotates broadcast keys. (Range: 0 - 1440 minutes)
```

Default Setting

0 (Disabled)

Command Mode

Global Configuration

Command Usage

 The access point uses Enterprise APOL (Extensible Authentication Protocol Over LANs) packets to pass dynamic unicast session and broadcast keys to wireless clients. The 802.1x

broadcast-key-refresh-rate command specifies the interval after which the broadcast keys are changed. The 802.1x session-key-refresh-rate

command specifies the interval after which unicast session keys are changed.

 Dynamic broadcast key rotation allows the access point to generate a random group key and periodically update all key-management capable wireless clients.

Example

```
Enterprise AP(config)#802.1X broadcast-key-refresh-rate 5
Enterprise AP(config)#
```

802.1x session-key-refresh-rate

This command sets the interval at which unicast session keys are refreshed for associated stations using dynamic keying.

Syntax

802.1x session-key-refresh-rate < rate>

```
rate - The interval at which the access point refreshes a session key.
(Range: 0 - 1440 minutes)
```

Default Setting

0 (Disabled)

Command Mode

Global Configuration

Command Usage

Session keys are unique to each client, and are used to authenticate a client connection, and correlate traffic passing between a specific client and the access point.

Example

```
Enterprise AP(config)#802.1x session-key-refresh-rate 5
Enterprise AP(config)#
```

802.1x session-timeout

This command sets the time period after which a connected client must be re-authenticated. Use the **no** form to disable 802.1X re-authentication.

Syntax

```
802.1x session-timeout <seconds>
no 802.1x session-timeout
seconds - The number of seconds. (Range: 0-65535)
```

Default

0 (Disabled)

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#802.1x session-timeout 300
Enterprise AP(config)#
```

802.1x-supplicant enable

This command enables the access point to operate as an 802.1X supplicant for authentication. Use the **no** form to disable 802.1X authentication of the access point.

Syntax

802.1x-supplicant enable no 802.1x-supplicant

Default

Disabled

Command Mode

Global Configuration

Command Usage

A user name and password must be configured first before the 802.1X supplicant feature can be enabled.

Example

```
Enterprise AP(config)#802.1x-supplicant enable Enterprise AP(config)#
```

802.1x-supplicant user

This command sets the user name and password used for authentication of the access point when operating as a 802.1X supplicant. Use the **no** form to clear the supplicant user name and password.

Syntax

```
802.1x-supplicant user <username> <password> no 802.1x-supplicant user
```

- username The access point name used for authentication to the network.
 (Range: 1-32 alphanumeric characters)
- password The MD5 password used for access point authentication. (Range: 1-32 alphanumeric characters)

Default

None

Command Mode

Global Configuration

Command Usage

The access point currently only supports EAP-MD5 CHAP for 802.1X supplicant authentication.

Example

```
Enterprise AP(config)#802.1x-supplicant user WA6102 dot1xpass
Enterprise AP(config)#
```

show authentication

This command shows all 802.1X authentication settings, as well as the address filter table.

Command Mode

Exec

```
Enterprise AP#show authentication
Authentication Information
_____
MAC Authentication Server : DISABLED
MAC Auth Session Timeout Value : 0 min
802.1x supplicant user : EMPTY 802.1x supplicant user
802.1x supplicant password : EMPTY
Address Filtering
                       : ALLOWED
System Default : ALLOW addresses not found in filter table.
Filter Table
MAC Address
                  Status
-----
00-70-50-cc-99-1a
                  DENIED
00-70-50-cc-99-1b
                  ALLOWED
_____
Enterprise AP(config)#
```

MAC Address Authentication

Use these commands to define MAC authentication on the access point. For local MAC authentication, first define the default filtering policy using the address filter default command. Then enter the MAC addresses to be filtered, indicating if they are allowed or denied. For RADIUS MAC authentication, the MAC addresses and filtering policy must be configured on the RADIUS server.

Table 6-13. MAC Address Authentication			
Command	Function	Mode	Page
address filter default	Sets filtering to allow or deny listed addresses	GC	6-69
address filter entry	Enters a MAC address in the filter table	GC	6-70
address filter delete	Removes a MAC address from the filter table	GC	6-70
mac- authentication server	Sets address filtering to be performed with local or remote options	GC	6-71
mac- authentication session-timeout	Sets the interval at which associated clients will be re-authenticated with the RADIUS server authentication database	GC	6-71
show authentication	Shows all 802.1X authentication settings, as well as the address filter table	Exec	6-67

address filter default

This command sets filtering to allow or deny listed MAC addresses.

Syntax

address filter default <allowed | denied>

- allowed Only MAC addresses entered as "denied" in the address filtering table are denied.
- denied Only MAC addresses entered as "allowed" in the address filtering table are allowed

Default

allowed

Command Mode

Global Configuration

Example

Enterprise AP(config) #address filter default denied
Enterprise AP(config) #

Related Commands

address filter entry (6-70) 802.1x-supplicant user (6-67)

address filter entry

This command enters a MAC address in the filter table.

Syntax

address filter entry <mac-address> <allowed | denied>

- mac-address Physical address of client. (Enter six pairs of hexadecimal digits separated by hyphens; e.g., 00-90-D1-12-AB-89.)
- · allowed Entry is allowed access.
- · denied Entry is denied access.

Default

None

Command Mode

Global Configuration

Command Mode

- The access point supports up to 1024 MAC addresses.
- An entry in the address table may be allowed or denied access depending on the global setting configured for the address entry default command.

Example

```
Enterprise AP(config) #address filter entry 00-70-50-cc-99-1a allowed Enterprise AP(config) #
```

Related Commands

```
address filter default (6-69)
802.1x-supplicant user (6-67)
```

address filter delete

This command deletes a MAC address from the filter table.

Syntax

address filter delete < mac-address >

mac-address - Physical address of client. (Enter six pairs of hexadecimal digits separated by hyphens.)

Default

None

Command Mode

Global Configuration

Example

```
Enterprise AP(config) #address filter delete 00-70-50-cc-99-1b Enterprise AP(config) #
```

Related Commands

802.1x-supplicant user (6-67)

mac-authentication server

This command sets address filtering to be performed with local or remote options. Use the **no** form to disable MAC address authentication.

Syntax

mac-authentication server [local | remote]

- local Authenticate the MAC address of wireless clients with the local authentication database during 802.11 association.
- remote Authenticate the MAC address of wireless clients with the RADIUS server during 802.1X authentication.

Default

Disabled

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#mac-authentication server remote
Enterprise AP(config)#
```

Related Commands

```
address filter entry (6-70)
radius-server address (6-58)
802.1x-supplicant user (6-67)
```

mac-authentication session-timeout

This command sets the interval at which associated clients will be re-authenticated with the RADIUS server authentication database. Use the **no** form to disable reauthentication.

Syntax

mac-authentication session-timeout <minutes>

minutes - Re-authentication interval. (Range: 0-1440)

6 Command Line Interface

Default

0 (disabled)

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#mac-authentication session-timeout 1
Enterprise AP(config)#
```

Filtering Commands

The commands described in this section are used to filter communications between wireless clients, control access to the management interface from wireless clients, and filter traffic using specific Ethernet protocol types.

Table 6-14. Filtering Commands				
Command	Function	Mode	Page	
filter local-bridge	Disables communication between wireless clients	GC	6-72	
filter ap-manage	Prevents wireless clients from accessing the management interface	GC	6-73	
filter uplink enable	Ethernet port MAC address filtering	GC	6-73	
filter uplink	Adds or deletes a MAC address from the filtering table	GC	6-74	
filter ethernet-type enable	Checks the Ethernet type for all incoming and outgoing Ethernet packets against the protocol filtering table	GC	7-74	
filter ethernet-type protocol	Sets a filter for a specific Ethernet type	GC	6-75	
show filters	Shows the filter configuration	Exec	6-76	

filter local-bridge

This command disables communication between wireless clients. Use the **no** form to disable this filtering.

Syntax

filter local-bridge no filter local-bridge

Default

Disabled

Command Mode

Global Configuration

Command Usage

This command can disable wireless-to-wireless communications between clients via the access point. However, it does not affect communications between wireless clients and the wired network.

Example

```
Enterprise AP(config)#filter local-bridge
Enterprise AP(config)#
```

filter ap-manage

This command prevents wireless clients from accessing the management interface on the access point. Use the **no** form to disable this filtering.

Syntax

filter ap-manage no filter ap-manage

Default

Enabled

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#filter AP-manage
Enterprise AP(config)#
```

filter uplink enable

This command enables filtering of MAC addresses from the Ethernet port.

Syntax

[no] filter uplink enable

Default

Disabled

Command Mode

Global Configuration

```
Enterprise AP(config)#filter uplink enable
Enterprise AP(config)#
```

filter uplink

This command adds or deletes MAC addresses from the uplink filtering table.

Syntax

filter uplink <add | delete > MAC address

MAC address - Specifies a MAC address in the form xx-xx-xx-xx-xx. A maximum of eight addresses can be added to the filtering table.

Default

Disabled

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#filter uplink add 00-12-34-56-78-9a
Enterprise AP(config)#
```

filter ethernet-type enable

This command checks the Ethernet type on all incoming and outgoing Ethernet packets against the protocol filtering table. Use the **no** form to disable this feature.

Syntax

filter ethernet-type enable no filter ethernet-type enable

Default

Disabled

Command Mode

Global Configuration

Command Usage

This command is used in conjunction with the **filter ethernet-type protocol** command to determine which Ethernet protocol types are to be filtered.

Example

```
Enterprise AP(config)#filter ethernet-type enable
Enterprise AP(config)#
```

Related Commands

filter ethernet-type protocol (6-75)

filter ethernet-type protocol

This command sets a filter for a specific Ethernet type. Use the **no** form to disable filtering for a specific Ethernet type.

Syntax

filter ethernet-type protocol col>
no filter ethernet-type protocol col>

protocol - An Ethernet protocol type. (Options: ARP, RARP, Berkeley-Trailer-Negotiation, LAN-Test, X25-Level-3, Banyan, CDP, DEC XNS, DEC-MOP-Dump-Load, DEC-MOP, DEC-LAT, Ethertalk, Appletalk-ARP, Novell-IPX(old), Novell-IPX(new), EAPOL, Telxon-TXP, Aironet-DDP, Enet-Config-Test, IP, IPv6, NetBEUI, PPPoE_Discovery, PPPoE_PPP_Session)

Default

None

Command Mode

Global Configuration

Command Usage

Use the **filter ethernet-type enable** command to enable filtering for Ethernet types specified in the filtering table, or the no **filter ethernet-type enable** command to disable all filtering based on the filtering table.

Example

```
Enterprise AP(config)#filter ethernet-type protocol ARP
Enterprise AP(config)#
```

Related Commands

filter ethernet-type enable (7-74)

show filters

This command shows the filter options and protocol entries in the filter table.

Command Mode

Exec

Example

WDS Bridge Commands

The commands described in this section are used to set the operation mode for each access point interface and configure Wireless Distribution System (WDS) forwarding table settings.

Command	Function	Mode	Page
bridge role	Selects the bridge operation mode for a radio interface	IC-W	6-77
bridge-link parent	Configures the MAC addresses of the parent bridge node	IC-W	6-77
bridge-link child	Configures MAC addresses of connected child bridge nodes	IC-W	6-78
bridge dynamic-entry age-time	Sets the aging time for dynamic entries in the WDS forwarding table	GC	6-79
show bridge aging-time	Displays the current WDS forwarding table aging time	Exec	6-79
show bridge filter-entry	Displays current entries in the bridge MAC address table	Exec	6-80
show bridge link	Displays current bridge settings for specified interfaces	Exec	6-80

bridge role (WDS)

This command selects the bridge operation mode for the radio interface.

Syntax

bridge role <ap | repeater | bridge | root-bridge >

- ap Operates only as an access point for wireless clients.
- repeater Operates as a wireless repeater, extending the range for remote wireless clients and connecting them to the root bridge. The "Parent" link to the root bridge must be configured. In this mode, traffic is not forwarded to the Ethernet port from the radio interface.
- bridge Operates as a bridge to other access points also in bridge mode.
- root-bridge Operates as the root bridge in the wireless bridge network.

Default Setting

AP

Command Mode

Interface Configuration (Wireless)

Command Usage

- When the bridge role is set to "repeater," the "Parent" link to the root bridge
 must be configured (see "bridge-link parent" on page 6-77). When the
 access point is operating in this mode, traffic is not forwarded to the
 Ethernet port from the radio interface.
- Up to six WDS bridge links (MAC addresses) can be specified for each unit
 in the wireless bridge network. One unit only must be configured as the
 "root bridge" in the wireless network. The root bridge is the unit connected
 to the main core of the wired LAN. Other bridges need to specify one
 "Parent" link to the root bridge or to a bridge connected to the root bridge.
 The other six WDS links are available as "Child" links to other bridges.
- The bridge link on the radio interface always uses the default VAP interface.
 In any bridge mode, VAP interfaces 1 to 7 are not available for use.

Example

```
Enterprise AP(if-wireless g) #bridge role root-bridge
Enterprise AP(if-wireless g) #
```

bridge-link parent

This command configures the MAC address of the parent bridge node.

Syntax

bridge-link parent <mac-address>

mac-address - The wireless MAC address of the parent bridge unit. (12 hexadecimal digits in the form "xx-xx-xx-xx").

Default Setting

None

Command Mode

Interface Configuration (Wireless)

Command Usage

Every bridge (except the root bridge) in the wireless bridge network must specify the MAC address of the parent bridge that is linked to the root bridge, or the root bridge itself.

Example

```
Enterprise AP(if-wireless g) #bridge-link parent 00-08-2d-69-3a-51
Enterprise AP(if-wireless g) #
```

bridge-link child

This command configures the MAC addresses of child bridge nodes.

Syntax

bridge-link child <index> <mac-address>

- index The link index number of the child node. (Range: 1 6)
- mac-address The wireless MAC address of a child bridge unit.
 (12 hexadecimal digits in the form "xx-xx-xx-xx-xx").

Default Setting

None

Command Mode

Interface Configuration (Wireless)

Command Usage

Up to six child bridge links can be specified using link index numbers 1 to 6.

```
Enterprise AP(if-wireless g) #bridge-link child 2 00-08-3e-84-bc-6d Enterprise AP(if-wireless g) #bridge-link child 3 00-08-3e-85-13-f2 Enterprise AP(if-wireless g) #bridge-link child 4 00-08-3e-84-79-31 Enterprise AP(if-wireless g) #
```

bridge dynamic-entry age-time

This command sets the time for aging out dynamic entries in the WDS forwarding table.

Syntax

bridge dynamic-entry age-time <seconds>

seconds - The time to age out an address entry. (Range: 10-10000 seconds).

Default Setting

300 seconds

Command Mode

Global Configuration

Command Usage

If the MAC address of an entry in the address table is not seen on the associated interface for longer than the aging time, the entry is discarded.

Example

```
Enterprise AP(config)#bridge dynamic-entry age-time 100
Enterprise AP(config)#
```

show bridge aging-time

This command displays the current WDS forwarding table aging time setting.

Command Mode

Exec

```
Enterprise AP#show bridge aging-time
Aging time: 300
Enterprise AP#
```

show bridge filter-entry

This command displays current entries in the WDS forwarding table.

Command Mode

Exec

Example

```
Enterprise AP#show bridge filter-entry
max entry numbers =512
current entry nums =13
*******************
******************** Bridge MAC Addr Table ********************
****************
MAC | Port |Fwd_type| VlanID|origin life|remain Life| Type |
                                           Static
                                            Static
                                            Static
                                            Static
                                        300 Static
                                       300 Static
                                       300 Static
                                       300 Static
                                       300 Static
                                       300 Static
                                       175 Dynamic
                                       300 Static
                                       300 Static
Enterprise AP#
```

show bridge link

This command displays WDS bridge link and spanning tree settings for specified interfaces.

Syntax

show bridge link <ethernet | wireless <g> [index]>

- ethernet Specifies the Ethernet interface.
- wireless Specifies a wireless interface.
 - g The 802.11g radio interface.
 - index The index number of a bridge link. (Range: 1 6)

Command Mode

Exec

```
Enterprise AP#show bridge link wireless g 2
Port-No
                  : 11
                  : Enabled
status
state
                  : Disabled
priority
                  : 0
                  : 19
path cost
message age Timer : Inactive
                  : 4469
message age
                 : 4469
: priority = 32768, MAC = 00:30:F1:F0:9A:9C
designated-root
designated-cost
                  : 0
designated-bridge : priority = 32768, MAC = 00:30:F1:F0:9A:9C
designated-port : priority = 0, port No = 11
forward-transitions : 0
Enterprise AP#
```

```
Enterprise AP#show bridge link ethernet
status
                  : Enabled
state
                  : Forwarding
                   : 0
priority
                   : 19
path cost
message age Timer : Inactive
message age
                  : 4346
designated-root : priority = 32768, MAC = 00:30:F1:F0:9A:9C
designated-cost
                 : 0
designated-bridge : priority = 32768, MAC = 00:30:F1:F0:9A:9C
designated-port : priority = 0, port No = 1
forward-transitions : 1
Enterprise AP#
```

Spanning Tree Commands

The commands described in this section are used to set the MAC address table aging time and spanning tree parameters for both the Ethernet and wireless interfaces.

Table 6-15. Bridge Commands			
Command	Function	Mode	Page
bridge stp enable	Enables the Spanning Tree feature	GC	6-82
bridge stp forwarding-delay	Configures the spanning tree bridge forward time	GC	6-83
bridge stp hello-time	Configures the spanning tree bridge hello time	GC	6-83
bridge stp max-age	Configures the spanning tree bridge maximum age	GC	6-84
bridge stp priority	Configures the spanning tree bridge priority	GC	6-84
bridge-link path-cost	Configures the spanning tree path cost of a port	IC	6-85
bridge-link port-priority	Configures the spanning tree priority of a port	IC	6-85
show bridge stp	Displays the global spanning tree settings	Exec	6-86
show bridge link	Displays current bridge settings for specified interfaces	Exec	6-80

bridge stp enable

This command enables the Spanning Tree Protocol. Use the **no** form to disable the Spanning Tree Protocol.

Syntax

bridge stp enable no bridge stp enable

Default Setting

Enabled

Command Mode

Global Configuration

Example

This example globally enables the Spanning Tree Protocol.

Enterprise AP(config)bridge stp enable
Enterprise AP(config)

bridge stp forwarding-delay

Use this command to configure the spanning tree bridge forward time globally for the wireless bridge. Use the **no** form to restore the default.

Syntax

```
bridge stp forwarding-delay <seconds>
no bridge stp forwarding-delay
```

```
seconds - Time in seconds. (Range: 4 - 30 seconds)
The minimum value is the higher of 4 or [(max-age / 2) + 1].
```

Default Setting

15 seconds

Command Mode

Global Configuration

Command Usage

This command sets the maximum time (in seconds) the root device will wait before changing states (i.e., discarding to learning to forwarding). This delay is required because every device must receive information about topology changes before it starts to forward frames. In addition, each port needs time to listen for conflicting information that would make it return to the discarding state; otherwise, temporary data loops might result.

Example

```
Enterprise AP(config)#bridge stp forwarding-delay 20
Enterprise AP(config)#
```

bridge stp hello-time

Use this command to configure the spanning tree bridge hello time globally for the wireless bridge. Use the **no** form to restore the default.

Syntax

```
bridge stp hello-time <time> no bridge stp hello-time
```

```
time - Time in seconds. (Range: 1-10 seconds). The maximum value is the lower of 10 or [(max-age / 2) -1].
```

Default Setting

2 seconds

Command Mode

Global Configuration

Command Usage

This command sets the time interval (in seconds) at which the root device transmits a configuration message.

```
Enterprise AP(config) #bridge stp hello-time 5
Enterprise AP(config) #
```

bridge stp max-age

Use this command to configure the spanning tree bridge maximum age globally for the wireless bridge. Use the **no** form to restore the default.

Syntax

```
bridge stp max-age <seconds>
no bridge stp max-age
seconds - Time in seconds. (Range: 6-40 seconds)
The minimum value is the higher of 6 or [2 x (hello-time + 1)].
The maximum value is the lower of 40 or [2 x (forward-time - 1)].
```

Default Setting

20 seconds

Command Mode

Global Configuration

Command Usage

This command sets the maximum time (in seconds) a device can wait without receiving a configuration message before attempting to reconfigure. All device ports (except for designated ports) should receive configuration messages at regular intervals. Any port that ages out STP information (provided in the last configuration message) becomes the designated port for the attached LAN. If it is a root port, a new root port is selected from among the device ports attached to the network.

Example

```
Enterprise AP(config)#bridge stp max-age 40
Enterprise AP(config)#
```

bridge stp priority

Use this command to configure the spanning tree priority globally for the wireless bridge. Use the **no** form to restore the default.

Syntax

```
bridge stp priorityroority
no bridge stp priority
priority - Priority of the bridge. (Range: 0 - 65535)
```

Default Setting

32768

Command Mode

Global Configuration

Command Usage

Bridge priority is used in selecting the root device, root port, and designated port. The device with the highest priority becomes the STP root device. However, if all devices have the same priority, the device with the lowest MAC address will then become the root device.

Example

```
Enterprise AP(config) #bridge stp-bridge priority 40000
Enterprise AP(config) #
```

bridge-link path-cost

Use this command to configure the spanning tree path cost for the specified port.

Syntax

bridge-link path-cost <index> <cost>

- index Specifies the bridge link number on the wireless bridge. (Range: 1-6 required on wireless interface only)
- cost The path cost for the port. (Range: 1-65535)

Default Setting

19

Command Mode

Interface Configuration

Command Usage

- This command is used by the Spanning Tree Protocol to determine the best path between devices. Therefore, lower values should be assigned to ports attached to faster media, and higher values assigned to ports with slower media.
- Path cost takes precedence over port priority.

Example

```
Enterprise AP(if-wireless a) #bridge-link path-cost 1 50
Enterprise AP(if-wireless a) #
```

bridge-link port-priority

Use this command to configure the priority for the specified port.

Syntax

bridge-link port-priority <index> <priority>

- index Specifies the bridge link number on the wireless bridge. (Range: 1-6 required on wireless interface only)
- priority The priority for a port. (Range: 1-255)

Default Setting

128

Command Mode

Interface Configuration

Command Usage

- This command defines the priority for the use of a port in the Spanning Tree
 Protocol. If the path cost for all ports on a wireless bridge are the same, the
 port with the highest priority (that is, lowest value) will be configured as an
 active link in the spanning tree.
- Where more than one port is assigned the highest priority, the port with lowest numeric identifier will be enabled.

Example

```
Enterprise AP(if-wireless a) #bridge-link port-priority 1 64
Enterprise AP(if-wireless a) #
```

Related Commands

bridge-link path-cost (6-85)

show bridge stp

This command displays aging time and spanning tree settings for the Ethernet and wireless interfaces

Syntax

show bridge stp

Command Mode

Exec

```
Enterprise AP#show bridge stp

Bridge MAC : 00:12:CF:05:B7:84
Status : Disabled
priority : 0
designated-root : priority = 0, MAC = 00:00:00:00:00:00
root-path-cost : 0
root-Port-no : 0
Hold Time : 1 Seconds
Hello Time : 2 Seconds
Maximum Age : 20 Seconds
Forward Delay : 15 Seconds
bridge Hello Time : 2 Seconds
bridge Forward Delay : 15 Seconds
time-since-top-change: 89185 Seconds
topology-change-count: 0
Enterprise AP#
```


Ethernet Interface Commands

The commands described in this section configure connection parameters for the Ethernet port and wireless interface.

Table 6-16. Ethernet Interface Commands			
Command	Function	Mode	Page
interface ethernet	Enters Ethernet interface configuration mode	GC	6-87
dns primary- server	Specifies the primary name server	IC-E	6-88
dns secondary- server	Specifies the secondary name server	IC-E	6-88
ip address	Sets the IP address for the Ethernet interface	IC-E	6-88
ip dhcp	Submits a DHCP request for an IP address	IC-E	6-89
speed-duplex	Configures speed and duplex operation on the Ethernet interface	IC-E	6-90
shutdown	Disables the Ethernet interface	IC-E	6-91
show interface ethernet	Shows the status for the Ethernet interface	Exec	6-91

interface ethernet

This command enters Ethernet interface configuration mode.

Default Setting

None

Command Mode

Global Configuration

Example

To specify the 10/100Base-TX network interface, enter the following command:

Enterprise AP(config)#interface ethernet
Enterprise AP(if-ethernet)#

6 Command Line Interface

dns server

This command specifies the address for the primary or secondary domain name server to be used for name-to-address resolution.

Syntax

dns primary-server <server-address>
dns secondary-server <server-address>

- primary-server Primary server used for name resolution.
- secondary-server Secondary server used for name resolution.
- server-address IP address of domain-name server.

Default Setting

None

Command Mode

Global Configuration

Command Usage

The primary and secondary name servers are gueried in sequence.

Example

This example specifies two domain-name servers.

```
Enterprise AP(if-ethernet)#dns primary-server 192.168.1.55
Enterprise AP(if-ethernet)#dns secondary-server 10.1.0.55
Enterprise AP(if-ethernet)#
```

Related Commands

show interface ethernet (6-91)

ip address

This command sets the IP address for the access point. Use the **no** form to restore the default IP address.

Syntax

```
ip address <ip-address> <netmask> <gateway>
no ip address
```

- · ip-address IP address
- netmask Network mask for the associated IP subnet. This mask identifies
 the host address bits used for routing to specific subnets.
- gateway IP address of the default gateway

Default Setting

IP address: 192.168.2.2 Netmask: 255.255.255.0

Command Mode

Interface Configuration (Ethernet)

Command Usage

- DHCP is enabled by default. To manually configure a new IP address, you
 must first disable the DHCP client with the no ip dhcp command.
- You must assign an IP address to this device to gain management access
 over the network or to connect the access point to existing IP subnets. You
 can manually configure a specific IP address using this command, or direct
 the device to obtain an address from a DHCP server using the ip dhcp
 command. Valid IP addresses consist of four numbers, 0 to 255, separated
 by periods. Anything outside this format will not be accepted by the
 configuration program.

Example

```
Enterprise AP(config) #interface ethernet
Enter Ethernet configuration commands, one per line.
Enterprise AP(if-ethernet) #ip address 192.168.1.2 255.255.255.0
192.168.1.253
Enterprise AP(if-ethernet) #
```

Related Commands

ip dhcp (6-89)

ip dhcp

This command enables the access point to obtain an IP address from a DHCP server. Use the **no** form to restore the default IP address.

Syntax

ip dhcp no ip dhcp

Default Setting

Enabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

 You must assign an IP address to this device to gain management access over the network or to connect the access point to existing IP subnets. You can manually configure a specific IP address using the ip address command, or direct the device to obtain an address from a DHCP server using this command. When you use this command, the access point will begin broadcasting DHCP client requests. The current IP address (i.e., default or manually configured address) will continue to be effective until a DHCP reply is received. Requests will be broadcast periodically by this device in an effort to learn its IP address. (DHCP values can include the IP address, subnet mask, and default gateway.)

Example

```
Enterprise AP(config)#interface ethernet
Enter Ethernet configuration commands, one per line.
Enterprise AP(if-ethernet)#ip dhcp
Enterprise AP(if-ethernet)#
```

Related Commands

ip address (6-88)

speed-duplex

This command configures the speed and duplex mode of a given interface when autonegotiation is disabled. Use the **no** form to restore the default.

Syntax

```
speed-duplex <auto | 10MH | 10MF | 100MF | 100MH>
```

- · auto autonegotiate speed and duplex mode
- 10MH Forces 10 Mbps, half-duplex operation
- 10MF Forces 10 Mbps, full-duplex operation
- 100MH Forces 100 Mbps, half-duplex operation
- 100MF Forces 100 Mbps, full-duplex operation

Default Setting

Auto-negotiation is enabled by default.

Command Mode

Interface Configuration (Ethernet)

Command Usage

If autonegotiation is disabled, the speed and duplex mode must be configured to match the setting of the attached device.

Example

The following example configures the Ethernet port to 100 Mbps, full-duplex operation.

```
Enterprise AP(if-ethernet)#speed-duplex 100mf
Enterprise AP(if-ethernet)#
```

shutdown

This command disables the Ethernet interface. To restart a disabled interface, use the **no** form.

Syntax

shutdown no shutdown

Default Setting

Interface enabled

Command Mode

Interface Configuration (Ethernet)

Command Usage

This command allows you to disable the Ethernet port due to abnormal behavior (e.g., excessive collisions), and reenable it after the problem has been resolved. You may also want to disable the Ethernet port for security reasons.

Example

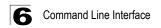
The following example disables the Ethernet port.

```
Enterprise AP(if-ethernet) #shutdown
Enterprise AP(if-ethernet) #
```

show interface ethernet

This command displays the status for the Ethernet interface.

Syntax


show interface [ethernet]

Default Setting

Ethernet interface

Command Mode

Exec

Wireless Interface Commands

The commands described in this section configure connection parameters for the wireless interfaces.

Table 6-17. Wireless Interface Commands			
Command	Function	Mode	Page
interface wireless	Enters wireless interface configuration mode	GC	6-94
vap	Provides access to the VAP interface configuration mode	IC-W	6-94
speed	Configures the maximum data rate at which the access point transmits unicast packets	IC-W	6-95
turbo	Configures turbo mode to use a faster data rate	IC-W (a)	7-96
multicast-data-rate	Configures the maximum rate for transmitting multicast packets on the wireless interface	IC-W	6-95
channel	Configures the radio channel	IC-W	6-96
transmit-power	Adjusts the power of the radio signals transmitted from the access point	IC-W	6-96
radio-mode	Forces the operating mode of the 802.11g radio	IC-W (b/g)	6-97
preamble	Sets the length of the 802.11g signal preamble	IC-W (b/g)	6-98
antenna control	Selects the antenna control method to use for the radio	IC-W	6-98
antenna id	Selects the antenna ID to use for the radio	IC-W	6-99
antenna location	Selects the location of the antenna	IC-W	6-100

Table 6-17. Wireless Interface Commands			
Command	Function	Mode	Page
beacon-interval	Configures the rate at which beacon signals are transmitted from the access point	IC-W	6-100
dtim-period	Configures the rate at which stations in sleep mode must wake up to receive broadcast/multicast transmissions	IC-W	6-101
fragmentation- length	Configures the minimum packet size that can be fragmented	IC-W	6-101
rts-threshold	Sets the packet size threshold at which an RTS must be sent to the receiving station prior to the sending station starting communications	IC-W	6-102
super-a	Enables Atheros proprietary Super A performance enhancements	IC-W (a)	7-105
super-g	Enables Atheros proprietary Super G performance enhancements	IC-W (b/g)	6-103
description	Adds a description to the wireless interface	IC-W-VAP	6-103
ssid	Configures the service set identifier	IC-W-VAP	6-104
closed system	Opens access to clients without a pre-configured SSID	IC-W-VAP	6-104
max-association	Configures the maximum number of clients that can be associated with the access point at the same time	IC-W-VAP	6-105
assoc- timeout-interval	Configures the idle time interval (when no frames are sent) after which a client is disassociated from the VAP interface	IC-W-VAP	6-105
auth- timeout-value	Configures the time interval after which clients must be re-authenticated	IC-W-VAP	6-105
shutdown	Disables the wireless interface	IC-W-VAP	6-106
show interface wireless	Shows the status for the wireless interface	Exec	6-107
show station	Shows the wireless clients associated with the access point	Exec	6-108

interface wireless

This command enters wireless interface configuration mode.

Syntax

interface wireless <g>

• g - 802.11g radio interface.

Default Setting

None

Command Mode

Global Configuration

Example

To specify the 802.11g interface, enter the following command:

```
Enterprise AP(config)#interface wireless g
Enterprise AP(if-wireless g)#
```

vap

This command provides access to the VAP (Virtual Access Point) interface configuration mode.

Syntax

vap <vap-id>

vap-id - The number that identifies the VAP interface. (Options: 0-7)

Default Setting

None

Command Mode

Interface Configuration (Wireless)

```
Enterprise AP(if-wireless g) #vap 0
Enterprise AP(if-wireless g: VAP[0]) #
```


speed

This command configures the maximum data rate at which the access point transmits unicast packets.

Syntax

```
speed <speed>
speed - Maximum access speed allowed for wireless clients.
(Options for 802.11b/g: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps)
```

Default Setting

54 Mbps

Command Mode

Interface Configuration (Wireless)

Command Usage

 The maximum transmission distance is affected by the data rate. The lower the data rate, the longer the transmission distance. Please refer to the table for maximum distances on page C-5.

Example

```
Enterprise AP(if-wireless g) #speed 6
Enterprise AP(if-wireless g) #
```

multicast-data-rate

This command configures the maximum data rate at which the access point transmits multicast and management packets (excluding beacon packets) on the wireless interface.

Syntax

```
multicast-data-rate <speed>
```

```
speed - Maximum transmit speed allowed for multicast data.
(Options for 802.11b/g; 1, 2, 5.5, 11 Mbps)
```

Default Setting

1 Mbps for 802.11b/g

Command Mode

Interface Configuration (Wireless)

```
Enterprise AP(if-wireless g) #multicast-data-rate 5.5
Enterprise AP(if-wireless g) #
```

channel

This command configures the radio channel through which the access point communicates with wireless clients.

Syntax

channel < channel | auto>

- channel Manually sets the radio channel used for communications with wireless clients. (Range for 802.11b/g: 1 to 11)
- auto Automatically selects an unoccupied channel (if available).
 Otherwise, the lowest channel is selected.

Default Setting

Automatic channel selection

Command Mode

Interface Configuration (Wireless)

Command Usage

- The available channel settings are limited by local regulations, which determine the number of channels that are available.
- When multiple access points are deployed in the same area, be sure to choose a channel separated by at least five channels for 802.11b/g. You can deploy up to three access points for 802.11b/g (e.g., channels 1, 6, 11).
- For most wireless adapters, the channel for wireless clients is automatically set to the same as that used by the access point to which it is linked.

Example

```
Enterprise AP(if-wireless g)#channel 1
Enterprise AP(if-wireless g)#
```

transmit-power

This command adjusts the power of the radio signals transmitted from the access point.

Syntax

transmit-power < signal-strength>

signal-strength - Signal strength transmitted from the access point. (Options: full, half, quarter, eighth, min)

Default Setting

full

Command Mode

Interface Configuration (Wireless)

Command Usage

- · The "min" keyword indicates minimum power.
- The longer the transmission distance, the higher the transmission power required. But to support the maximum number of users in an area, you must keep the power as low as possible. Power selection is not just a trade off between coverage area and maximum supported clients. You also have to ensure that high strength signals do not interfere with the operation of other radio devices in your area.

Example

```
Enterprise AP(if-wireless g)#transmit-power half
Enterprise AP(if-wireless g)#
```

radio-mode

This command forces the operating mode for the 802.11g wireless interface.

Syntax

radio-mode <b | g | b+g>

- b b-only mode: Both 802.11b and 802.11g clients can communicate with the access point, but 802.11g clients can only transfer data at 802.11b standard rates (up to 11 Mbps).
- g g-only mode: Only 802.11g clients can communicate with the access point (up to 54 Mbps).
- b+g b & g mixed mode: Both 802.11b and 802.11g clients can communicate with the access point (up to 54 Mbps).

Default Setting

b+g mode

Command Mode

Interface Configuration (Wireless - 802.11g)

Command Usage

- For Japan, only 13 channels are available when set to g or b+g modes.
 When set to b mode, 14 channels are available.
- Both the 802.11g and 802.11b standards operate within the 2.4 GHz band.
 If you are operating in g mode, any 802.11b devices in the service area will contribute to the radio frequency noise and affect network performance.

```
Enterprise AP(if-wireless g) #radio-mode g
Enterprise AP(if-wireless g) #
```

preamble

This command sets the length of the signal preamble that is used at the start of a 802.11b/g data transmission.

Syntax

preamble [long | short]

- long Sets the preamble to long (192 microseconds).
- short Sets the preamble to short (96 microseconds).

Default Setting

Short-or-Long

Command Mode

Interface Configuration (Wireless - 802.11b/g)

Command Usage

- Using a short preamble instead of a long preamble can increase data throughput on the access point, but requires that all clients can support a short preamble.
- Set the preamble to long to ensure the access point can support all 802.11b and 802.11g clients.

Example

```
Enterprise AP(if-wireless g) #preamble short
Enterprise AP(if-wireless g) #
```

antenna control

This command selects the use of two diversity antennas or a single antenna for the radio interface.

Note: This access point does not support the use of optional external antennas.

Syntax

antenna control <diversity | left | right>

- diversity The radio uses both antennas in a diversity system. Select this
 method when the Antenna ID is set to "Default Antenna" to use the access
 point's integrated antennas.
- left The radio only uses the antenna on the left side (the side farthest from the access point LEDs).
- right The radio only uses the antenna on the right side (the side closest to the access point LEDs).

Default Setting

Diversity

Command Mode

Interface Configuration (Wireless)

Command Usage

The antenna ID must be selected in conjunction with the antenna control method to configure proper use of any of the antenna options.

Example

```
Enterprise AP(if-wireless g)#antenna control right
Enterprise AP(if-wireless g)#
```

antenna id

This command specifies the antenna type connected to the access point represented by a four-digit hexadecimal ID number, either the integrated diversity antennas (the "Default Antenna") or an optional external antenna.

Note: This access point does not support the use of optional external antennas.

Syntax

antenna id <antenna-id>

 antenna-id - Specifies the ID number of an approved antenna that is connected to the access point. (Range: 0x0000 - 0xFFFF)

Default Setting

0x0000 (built-in antennas)

Command Mode

Interface Configuration (Wireless)

Command Usage

- The optional external antennas (if any) that are certified for use with the
 access point are listed by typing antenna control id?. Selecting the
 correct antenna ID ensures that the access point's radio transmissions are
 within regulatory power limits for the country of operation.
- The antenna ID must be selected in conjunction with the antenna control method to configure proper use of any of the antenna options.

```
Enterprise AP(if-wireless g)#antenna id 0000
Enterprise AP(if-wireless g)#
```

antenna location

This command selects the antenna mounting location for the radio interface.

Syntax

antenna location <indoor | outdoor>

- · indoor The antenna is mounted indoors.
- · outdoor The antenna is mounted outdoors.

Default Setting

Indoor

Command Mode

Interface Configuration (Wireless)

Command Usage

 Selecting the correct location ensures that the access point only uses radio channels that are permitted in the country of operation.

Example

```
Enterprise AP(if-wireless g)#antenna location indoor
Enterprise AP(if-wireless g)#
```

beacon-interval

This command configures the rate at which beacon signals are transmitted from the access point.

Syntax

beacon-interval <interval>

```
interval - The rate for transmitting beacon signals. (Range: 20-1000 milliseconds)
```

Default Setting

100

Command Mode

Interface Configuration (Wireless)

Command Usage

The beacon signals allow wireless clients to maintain contact with the access point. They may also carry power-management information.

```
Enterprise AP(if-wireless g) #beacon-interval 150
Enterprise AP(if-wireless g) #
```


dtim-period

This command configures the rate at which stations in sleep mode must wake up to receive broadcast/multicast transmissions.

Syntax

dtim-period <interval>

interval - Interval between the beacon frames that transmit broadcast or multicast traffic. (Range: 1-255 beacon frames)

Default Setting

1

Command Mode

Interface Configuration (Wireless)

Command Usage

- The Delivery Traffic Indication Map (DTIM) packet interval value indicates how often the MAC layer forwards broadcast/multicast traffic. This parameter is necessary to wake up stations that are using Power Save mode.
- The DTIM is the interval between two synchronous frames with broadcast/ multicast information. The default value of 2 indicates that the access point will save all broadcast/multicast frames for the Basic Service Set (BSS) and forward them after every second beacon.
- Using smaller DTIM intervals delivers broadcast/multicast frames in a more timely manner, causing stations in Power Save mode to wake up more often and drain power faster. Using higher DTIM values reduces the power used by stations in Power Save mode, but delays the transmission of broadcast/multicast frames.

Example

```
Enterprise AP(if-wireless g)#dtim-period 100
Enterprise AP(if-wireless g)#
```

fragmentation-length

This command configures the minimum packet size that can be fragmented when passing through the access point.

Syntax

fragmentation-length </ength>

```
length - Minimum packet size for which fragmentation is allowed. (Range: 256-2346 bytes)
```

Default Setting

2346

Command Mode

Interface Configuration (Wireless)

Command Usage

- If the packet size is smaller than the preset Fragment size, the packet will not be segmented.
- Fragmentation of the PDUs (Package Data Unit) can increase the reliability
 of transmissions because it increases the probability of a successful
 transmission due to smaller frame size. If there is significant interference
 present, or collisions due to high network utilization, try setting the fragment
 size to send smaller fragments. This will speed up the retransmission of
 smaller frames. However, it is more efficient to set the fragment size larger
 if very little or no interference is present because it requires overhead to
 send multiple frames.

Example

```
Enterprise AP(if-wireless g)#fragmentation-length 512
Enterprise AP(if-wireless g)#
```

rts-threshold

This command sets the packet size threshold at which a Request to Send (RTS) signal must be sent to the receiving station prior to the sending station starting communications.

Syntax

```
rts-threshold <threshold>
```

```
threshold - Threshold packet size for which to send an RTS. (Range: 0-2347 bytes)
```

Default Setting

2347

Command Mode

Interface Configuration (Wireless)

Command Usage

- If the threshold is set to 0, the access point always sends RTS signals. If set to 2347, the access point never sends RTS signals. If set to any other value, and the packet size equals or exceeds the RTS threshold, the RTS/CTS (Request to Send / Clear to Send) mechanism will be enabled.
- The access point sends RTS frames to a receiving station to negotiate the sending of a data frame. After receiving an RTS frame, the station sends a

CTS frame to notify the sending station that it can start sending data.

 Access points contending for the wireless medium may not be aware of each other. The RTS/CTS mechanism can solve this "Hidden Node" problem.

Example

```
Enterprise AP(if-wireless g) #rts-threshold 256
Enterprise AP(if-wireless g) #
```

super-g

This command enables Atheros proprietary Super G performance enhancements. Use the **no** form to disable this function.

Syntax

```
[no] super-g
```

Default Setting

Disabled

Command Mode

Interface Configuration (Wireless - 802.11g)

Command Usage

These enhancements include bursting, compression, fast frames and dynamic turbo. Maximum throughput ranges between 40 to 60 Mbps for connections to Atheros-compatible clients.

Example

```
Enterprise AP(if-wireless g) #super g
Enterprise AP(if-wireless g) #
```

description

This command adds a description to a the wireless interface. Use the **no** form to remove the description.

Syntax

```
description <string>
no description

string - Comment or a description for this interface.
(Range: 1-80 characters)
```

Default Setting

None

Command Mode

Interface Configuration (Wireless-VAP)

```
Enterprise AP(if-wireless g: VAP[0])#description RD-AP#3
Enterprise AP(if-wireless g: VAP[0])#
```

ssid

This command configures the service set identifier (SSID).

Syntax

```
ssid <string>
```

string - The name of a basic service set supported by the access point. (Range: 1 - 32 characters)

Default Setting

```
802.11g Radio: SMC_VAP_11G0 (0 to 7)
```

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

Clients that want to connect to the wireless network via an access point must set their SSIDs to the same as that of the access point.

Example

```
Enterprise AP(if-wireless g: VAP[0])#ssid RD-AP#3
Enterprise AP(if-wireless g)#
```

closed-system

This command prohibits access to clients without a pre-configured SSID. Use the **no** form to disable this feature.

Syntax

```
closed-system 
no closed-system
```

Default Setting

Disabled

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

When closed system is enabled, the access point will not include its SSID in beacon messages. Nor will it respond to probe requests from clients that do not include a fixed SSID.


```
Enterprise AP(if-wireless g: VAP[0])#closed-system
Enterprise AP(if-wireless g)#
```

max-association

This command configures the maximum number of clients that can be associated with the access point at the same time.

Syntax

```
max-association < count>
```

count - Maximum number of associated stations. (Range: 0-64)

Default Setting

64

Command Mode

Interface Configuration (Wireless-VAP)

Example

```
Enterprise AP(if-wireless g: VAP[0])#max-association 32
Enterprise AP(if-wireless g)#
```

assoc-timeout-interval

This command configures the idle time interval (when no frames are sent) after which the client is disassociated from the VAP interface.

Syntax

assoc-timeout-interval <minutes>

minutes - The number of minutes of inactivity before disassociation. (Range: 5-60)

Default Setting

30

Command Mode

Interface Configuration (Wireless-VAP)

Example

```
Enterprise AP(if-wireless g: VAP[0])#association-timeout-interval 20
Enterprise AP(if-wireless g: VAP[0])#
```

auth-timeout-value

This command configures the time interval within which clients must complete authentication to the VAP interface.

Syntax

auth-timeout-value < minutes >

minutes - The number of minutes before re-authentication. (Range: 5-60)

Default Setting

60

Command Mode

Interface Configuration (Wireless-VAP)

Example

```
Enterprise AP(if-wireless g: VAP[0])#auth-timeout-value 40
Enterprise AP(if-wireless g: VAP[0])#
```

shutdown

This command disables the wireless interface. Use the **no** form to restart the interface

Syntax

shutdown no shutdown

Default Setting

Interface enabled

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

You must first enable VAP interface 0 before you can enable VAP interfaces 1, 2, 3, 4, 5, 6, or 7.

```
Enterprise AP(if-wireless g: VAP[0]) #shutdown
Enterprise AP(if-wireless g) #
```


show interface wireless

This command displays the status for the wireless interface.

Syntax

show interface wireless <g> vap-id

- g 802.11g radio interface.
- vap-id The number that identifies the VAP interface. (Options: 0~7)

Command Mode

Exec

```
Enterprise AP#show interface wireless g 0
Wireless Interface Information
_____
-----Identification-----
Description
                        : Enterprise 802.11g Access Point
SSID
                        : VAP TEST 11G 0
                        : OFF
Turbo Mode
Channel
                        : 1 (AUTO)
                       : Disable
-----802.11 Parameters-----
Transmit Power
                       : FULL (13 dBm)
RTS Threshold : 2347 bytes
Beacon Interval : 100 TUs
Authentication Timeout Interval : 60 Mins
Association Timeout Interval : 30 Mins
Preamble Length
                       : 1 beacon
                       : LONG
Maximum Association
                       : 64 stations
                        : 1
VLAN ID
-----Security-----
Closed System
                        : DISABLED
                        : WEP
Multicast cipher
                       : WEP-ONLY
WPA clients
WPA Key Mgmt Mode
                     : PRE SHARED KEY
                       : ALPHANUMERIC
WPA PSK Key Type
                       : DISABLED
Encryption
Default Transmit Key
Common Static Keys
                       : 1
                       : Key 1: EMPTY Key 2: EMPTY Key 3: EMPTY Key 4: EMPTY
                : OPEN
Authentication Type
______
Enterprise AP#
```

show station

This command shows the wireless clients associated with the access point.

Command Mode

Exec

Example

Rogue AP Detection Commands

A "rogue AP" is either an access point that is not authorized to participate in the wireless network, or an access point that does not have the correct security configuration. Rogue APs can potentially allow unauthorized users access to the network. Alternatively, client stations may mistakenly associate to a rogue AP and be prevented from accessing network resources. Rogue APs may also cause radio interference and degrade the wireless LAN performance.

The access point can be configured to periodically scan all radio channels and find other access points within range. A database of nearby access points is maintained where any rogue APs can be identified.

Table 6-18. Rogue AP Detection Commands			
Command	Function	Mode	Page
rogue-ap enable	Enables the periodic detection of other nearby access points	GC	6-109
rogue-ap authenticate	Enables identification of all access points	GC	6-110
rogue-ap duration	Sets the duration that all channels are scanned	GC	6-110
rogue-ap interval	Sets the time between each scan	GC	6-111
rogue-ap scan	Forces an immediate scan of all radio channels	GC	6-111
show rogue-ap	Shows the current database of detected access points	Exec	6-112

rogue-ap enable

This command enables the periodic detection of nearby access points. Use the **no** form to disable periodic detection.

Syntax

[no] rogue-ap enable

Default Setting

Disabled

Command Mode

Interface Configuration (Wireless)

Command Usage

- While the access point scans a channel for rogue APs, wireless clients will
 not be able to connect to the access point. Therefore, avoid frequent
 scanning or scans of a long duration unless there is a reason to believe that
 more intensive scanning is required to find a rogue AP.
- A "rogue AP" is either an access point that is not authorized to participate
 in the wireless network, or an access point that does not have the correct
 security configuration. Rogue access points can be identified by unknown
 BSSID (MAC address) or SSID configuration. A database of nearby access
 points should therefore be maintained on a RADIUS server, allowing any
 rogue APs to be identified (see "rogue-ap authenticate" on page 6-110).
 The rogue AP database can be viewed using the show rogue-ap
 command.
- The access point sends Syslog messages for each detected access point during a roque AP scan.

```
Enterprise AP(if-wireless g) #rogue-ap enable configure either syslog or trap or both to receive the rogue APs detected.
Enterprise AP(if-wireless g) #
```

rogue-ap authenticate

This command forces the unit to authenticate all access points on the network. Use the **no** form to disable this function.

Syntax

[no] rogue-ap authenticate

Default Setting

Disabled

Command Mode

Interface Configuration (Wireless)

Command Usage

Enabling authentication in conjunction with a database of approved access points stored on a RADIUS server allows the access point to discover rogue APs. With authentication enabled and a configure RADIUS server, the access point checks the MAC address/Basic Service Set Identifier (BSSID) of each access point that it finds against a RADIUS server to determine whether the access point is allowed. With authentication disabled, the access point can identify its neighboring access points only; it cannot identify whether the access points are allowed or are rogues. If you enable authentication, you should also configure a RADIUS server for this access point (see "RADIUS" on page 5-7).

Example

```
Enterprise AP(if-wireless g) #rogue-ap authenticate
Enterprise AP(if-wireless g) #
```

rogue-ap duration

This command sets the scan duration for detecting access points.

Syntax

```
rogue-ap duration <milliseconds>
```

milliseconds - The duration of the scan. (Range: 100-1000 milliseconds)

Default Setting

350 milliseconds

Command Mode

Interface Configuration (Wireless)

Command Usage

- During a scan, client access may be disrupted and new clients may not be able to associate to the access point. If clients experience severe disruption, reduce the scan duration time.
- A long scan duration time will detect more access points in the area, but causes more disruption to client access.

Example

```
Enterprise AP(if-wireless g) #rogue-ap duration 200
Enterprise AP(if-wireless g) #
```

Related Commands

rogue-ap interval (6-111)

rogue-ap interval

This command sets the interval at which to scan for access points.

Syntax

rogue-ap interval <minutes>

minutes - The interval between consecutive scans. (Range: 30-10080 minutes)

Default Setting

720 minutes

Command Mode

Interface Configuration (Wireless)

Command Usage

This command sets the interval at which scans occur. Frequent scanning will more readily detect other access points, but will cause more disruption to client access.

Example

```
Enterprise AP(if-wireless g)#rogue-ap interval 120
Enterprise AP(if-wireless g)#
```

Related Commands

rogue-ap duration (6-110)

rogue-ap scan

This command starts an immediate scan for access points on the radio interface.

Default Setting

Disabled

Command Mode

Interface Configuration (Wireless)

Command Usage

While the access point scans a channel for rogue APs, wireless clients will not be able to connect to the access point. Therefore, avoid frequent scanning or scans of a long duration unless there is a reason to believe that more intensive scanning is required to find a rogue AP.

Example

```
Enterprise AP(if-wireless g) #rogue-ap scan
Enterprise AP(if-wireless g) #rogueApDetect Completed (Radio G): 9 APs
detected
rogueAPDetect (Radio G): refreshing ap database now
Enterprise AP(if-wireless g)#
```

show rogue-ap

This command displays the current rogue AP database.

Command Mode

Exec

```
Enterprise AP#show roque-ap
802.11g Channel : Rogue AP Status
AP Address(BSSID) SSID Channel(MHz) RSSI Type Privacy RSN
______
00-04-e2-2a-37-23 WLAN1AP 11(2462 MHz) 17 ESS 0 0
00-04-e2-2a-37-3d
                    ANY
                           7(2442 MHz) 42 ESS
00-04-e2-2a-37-49
00-90-d1-08-9d-a7
00-30-f1-fb-31-f4
                  WLAN1AP
                           9(2452 MHz) 42 ESS
                                                0 0
                  WLAN1AP 1(2412 MHz) 12 ESS
                                                0 0
                   WLAN 6(2437 MHz) 16 ESS
                                                0 0
Enterprise AP#
```

Wireless Security Commands

The commands described in this section configure parameters for wireless security on the 802.11g interface.

Table 6-19. Wireless Security Commands			
Command	Function	Mode	Page
auth	Defines the 802.11 authentication type allowed by the access point	IC-W-VAP	6-116
encryption	Defines whether or not WEP encryption is used to provide privacy for wireless communications	IC-W-VAP	6-115
key	Sets the keys used for WEP encryption	IC-W	6-116
transmit-key	Sets the index of the key to be used for encrypting data frames sent between the access point and wireless clients	IC-W-VAP	6-117
cipher-suite	Selects an encryption method for the global key used for multicast and broadcast traffic	IC-W-VAP	6-118
mic_mode	Specifies how to calculate the Message Integrity Check (MIC)	IC-W	6-119
wpa-pre-shared- key	Defines a WPA preshared-key value	IC-W-VAP	6-120
pmksa-lifetime	Sets the lifetime PMK security associations	IC-W-VAP	6-120
pre-authentication	Enables WPA2 pre-authentication for fast roaming	IC-W-VAP	6-121

auth

This command defines the 802.11 authentication type allowed by the VAP interface.

Syntax

auth <open-system | shared-key | wpa | wpa-psk | wpa2 | wpa2-psk |
 wpa-wpa2-mixed | wpa-wpa2-psk-mixed | > <required | supported>

- open-system Accepts the client without verifying its identity using a shared key. "Open" authentication means either there is no encryption (if encryption is disabled) or WEP-only encryption is used (if encryption is enabled).
- shared-key Authentication is based on a shared key that has been distributed to all stations. If encryption is enabled, "shared" authentication uses WEP-only encryption.
- · wpa Clients using WPA are accepted for authentication.
- wpa-psk Clients using WPA with a Pre-shared Key are accepted for authentication
- wpa2 Clients using WPA2 are accepted for authentication.

6 Command Line Interface

- wpa2-psk Clients using WPA2 with a Pre-shared Key are accepted for authentication.
- wpa-wpa2-mixed Clients using WPA or WPA2 are accepted for authentication.
- wpa-wpa2-psk-mixed Clients using WPA or WPA2 with a Pre-shared Key are accepted for authentication
- required Clients are required to use WPA or WPA2.
- supported Clients may use WPA or WPA2, if supported.

Default Setting

open-system

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- To use WEP, set the authentication method to either "open-system" or "shared-key." Shared key authentication can only be used when WEP is enabled with the encryption command, and at least one static WEP key has been defined with the key command.
- When any WPA or WPA2 option is selected, clients are authenticated using 802.1X via a RADIUS server. Each client must be WPA-enabled or support 802.1X client software. The 802.1X settings (see "802.1X Authentication" on page 6-64) and RADIUS server details (see "RADIUS Client" on page 6-58) must be configured on the access point. A RADIUS server must also be configured and be available in the wired network.
- If a WPA/WPA2 mode that operates over 802.1X is selected (WPA, WPA2, WPA-WPA2-mixed, or WPA-WPA2-PSK-mixed), the 802.1X settings (see "802.1X Authentication" on page 6-64) and RADIUS server details (see "RADIUS Client" on page 6-58) must be configured. Be sure you have also configured a RADIUS server on the network before enabling authentication. Also, note that each client has to be WPA-enabled or support 802.1X client software. A RADIUS server must also be configured and be available in the wired network.
- If a WPA/WPA2 Pre-shared Key mode is selected (WPA-PSK, WPA2-PSK or WPA-WPA2-PSK-mixed), the key must first be generated and distributed to all wireless clients before they can successfully associate with the access point. Use the wpa-preshared-key command to configure the key (see "key" on page 6-116 and "transmit-key" on page 6-117).
- WPA2 defines a transitional mode of operation for networks moving from WPA security to WPA2. WPA2 Mixed Mode allows both WPA and WPA2 clients to associate to a common VAP interface. When the encryption cipher suite is set to TKIP, the unicast encryption cipher (TKIP or AES-CCMP) is negotiated for each client. The access point advertises it's supported encryption ciphers in beacon frames and probe responses. WPA and WPA2 clients select the cipher they support and return the choice in the

association request to the access point. For mixed-mode operation, the cipher used for broadcast frames is always TKIP. WEP encryption is not allowed.

- The "required" option places the VAP into TKIP only mode. The "supported" option places the VAP into TKIP+AES+WEP mode. The "required" mode is used in WPA-only environments.
- The "supported" mode can be used for mixed environments with legacy WPA products, specifically WEP. (For example, WPA+WEP. The WPA2+WEP environment is not available because WPA2 does not support WEP). To place the VAP into AES only mode, use "required" and then select the "cipher-ccmp" option for the cipher-suite command.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #auth shared-key
Enterprise AP(if-wireless g)#
```

Related Commands

```
encryption (6-115)
key (6-116)
```

encryption

This command enables data encryption for wireless communications. Use the no form to disable data encryption.

Syntax

```
encryption
no encryption
```

Default Setting

disabled

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- Wired Equivalent Privacy (WEP) is implemented in this device to prevent unauthorized access to your wireless network. For more secure data transmissions, enable encryption with this command, and set at least one static WEP key with the key command.
- The WEP settings must be the same on each client in your wireless network.
- Note that WEP protects data transmitted between wireless nodes, but does not protect any transmissions over your wired network or over the Internet.
- You must enable data encryption in order to enable all types of encryption (WEP, TKIP, and AES-CCMP) in the access point.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #encryption
Enterprise AP(if-wireless g) #
```

Related Commands

key (6-116)

key

This command sets the keys used for WEP encryption. Use the **no** form to delete a configured key.

Syntax

```
key <index> <size> <type> <value> no key index
```

- index Key index. (Range: 1-4)
- size Key size. (Options: 64, 128, or 152 bits)
- type Input format. (Options: ASCII, HEX)
- · value The key string.
 - For 64-bit keys, use 5 alphanumeric characters or 10 hexadecimal digits.
 - For 128-bit keys, use 13 alphanumeric characters or 26 hexadecimal digits.
 - For 152-bit keys, use 16 alphanumeric characters or 32 hexadecimal digits.

Default Setting

None

Command Mode

Interface Configuration (Wireless)

Command Usage

- To enable Wired Equivalent Privacy (WEP), use the auth shared-key command to select the "shared key" authentication type, use the encryption command to enable data encryption, use the key command to configure at least one key, and use the transmit-key command to assign a key to one of the VAP interfaces.
- If you enable Wi-Fi Protected Access (WPA/WPA2) with a pre-shared key
 option, use the encryption command to enable data encryption, use the
 key command to configure at least one key, and use the transmit-key
 command to assign a key to one of the VAP interfaces.
- If WEP or WPA/WPA2 with a pre-shared key option is enabled, all wireless
 clients must be configured with the same shared keys to communicate with
 the access point.

• The encryption index, length and type configured in the access point must match those configured in the clients.

Example

```
Enterprise AP(if-wireless g) #key 1 64 hex 1234512345
Enterprise AP(if-wireless g) #key 2 128 ascii asdeipadjsipd
Enterprise AP(if-wireless g) #key 3 64 hex 123451234512345123456
Enterprise AP(if-wireless g) #
```

Related Commands

```
key (6-116)
encryption (6-115)
transmit-key (6-117)
```

transmit-key

This command sets the index of the key to be used for encrypting data frames for broadcast or multicast traffic transmitted from the VAP to wireless clients.

Syntax

```
transmit-key <index>
index - Key index. (Range: 1-4)

Default Setting
```

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- If you use WEP key encryption or WPA/WPA2 with a pre-shared key option, the access point uses the transmit key to encrypt multicast and broadcast data signals that it sends to client devices. Other keys can be used for decryption of data from clients.
- When using IEEE 802.1X, the access point uses a dynamic key to encrypt unicast and broadcast messages to 802.1X-enabled clients. However, because the access point sends the keys during the 802.1X authentication process, these keys do not have to appear in the client's key list.
- In a mixed-mode environment with clients using static keys and WPA, select transmit key index 2, 3, or 4. The access point uses transmit key index 1 for the generation of dynamic keys.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #transmit-key 2
Enterprise AP(if-wireless g) #
```

cipher-suite

This command defines the cipher algorithm used to encrypt the global key for broadcast and multicast traffic when using Wi-Fi Protected Access (WPA) security.

Syntax

multicast-cipher <aes-ccmp | tkip | wep>

- aes-ccmp Use AES-CCMP encryption for the unicast and multicast cipher.
- tkip Use TKIP encryption for the multicast cipher. TKIP or AES-CCMP can be used for the unicast cipher depending on the capability of the client.
- wep Use WEP encryption for the multicast cipher. TKIP or AES-CCMP can be used for the unicast cipher depending on the capability of the client.

Default Setting

wep

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- WPA enables the access point to support different unicast encryption keys for each client. However, the global encryption key for multicast and broadcast traffic must be the same for all clients.
- If any clients supported by the access point are not WPA enabled, the multicast-cipher algorithm must be set to WEP.
- WEP is the first generation security protocol used to encrypt data crossing
 the wireless medium using a fairly short key. Communicating devices must
 use the same WEP key to encrypt and decrypt radio signals. WEP has
 many security flaws, and is not recommended for transmitting highly
 sensitive data
- TKIP provides data encryption enhancements including per-packet key
 hashing (i.e., changing the encryption key on each packet), a message
 integrity check, an extended initialization vector with sequencing rules, and
 a re-keying mechanism. Select TKIP if there are clients in the network that
 are not WPA2 compliant.
- TKIP defends against attacks on WEP in which the unencrypted initialization vector in encrypted packets is used to calculate the WEP key. TKIP changes the encryption key on each packet, and rotates not just the unicast keys, but the broadcast keys as well. TKIP is a replacement for WEP that removes the predictability that intruders relied on to determine the WEP key.

 AES-CCMP (Advanced Encryption Standard Counter-Mode/CBCMAC Protocol): WPA2 is backward compatible with WPA, including the same 802.1X and PSK modes of operation and support for TKIP encryption. The main enhancement is its use of AES Counter-Mode encryption with Cipher Block Chaining Message Authentication Code (CBC-MAC) for message integrity. The AES Counter-Mode/CBCMAC Protocol (AES-CCMP) provides extremely robust data confidentiality using a 128-bit key. The AES-CCMP encryption cipher is specified as a standard requirement for WPA2. However, the computational intensive operations of AES-CCMP requires hardware support on client devices. Therefore to implement WPA2 in the network, wireless clients must be upgraded to WPA2-compliant hardware.

Example

```
Enterprise AP(if-wireless q: VAP[0]) #multicast-cipher TKIP
Enterprise AP(if-wireless g)#
```

mic mode

This command specifies how to calculate the Message Integrity Check (MIC).

Syntax

mic mode <hardware | software>

- hardware Uses hardware to calculate the MIC.
- · software Uses software to calculate the MIC.

Default Setting

software

Command Mode

Interface Configuration (Wireless)

Command Usage

- The Michael Integrity Check (MIC) is part of the Temporal Key Integrity Protocol (TKIP) encryption used in Wi-Fi Protected Access (WPA) security. The MIC calculation is performed in the access point for each transmitted packet and this can impact throughput and performance. The access point supports a choice of hardware or software for MIC calculation. The performance of the access point can be improved by selecting the best method for the specific deployment.
- · Using the "hardware" option provides best performance when the number of supported clients is less than 27.
- Using the "software" option provides the best performance for a large number of clients on one radio interface. Throughput may be reduced when interfaces are supporting a high number of clients simultaneously.

Example

```
Enterprise AP(if-wireless g) #mic_mode hardware
Enterprise AP(if-wireless g) #
```

wpa-pre-shared-key

This command defines a Wi-Fi Protected Access (WPA/WPA2) preshared-key.

Syntax

wpa-pre-shared-key <hex | passphrase-key> <value>

- · hex Specifies hexadecimal digits as the key input format.
- passphrase-key Specifies an ASCII pass-phrase string as the key input format.
- value The key string. For ASCII input, specify a string between 8 and 63 characters. For HEX input, specify exactly 64 digits.

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- To support WPA or WPA2 for client authentication, use the auth command to specify the authentication type, and use the wpa-preshared-key command to specify one static key.
- If WPA or WPA2 is used with pre-shared-key mode, all wireless clients must be configured with the same pre-shared key to communicate with the access point's VAP interface.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #wpa-pre-shared-key ASCII agoodsecret
Enterprise AP(if-wireless g) #
```

Related Commands

auth (6-113)

pmksa-lifetime

This command sets the time for aging out cached WPA2 Pairwise Master Key Security Association (PMKSA) information for fast roaming.

Syntax

pmksa-lifetime <minutes>

```
minutes - The time for aging out PMKSA information. (Range: 0 - 14400 minutes)
```

Default Setting

720 minutes

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- WPA2 provides fast roaming for authenticated clients by retaining keys and other security information in a cache, so that if a client roams away from an access point and then returns reauthentication is not required.
- When a WPA2 client is first authenticated, it receives a Pairwise Master Key
 (PMK) that is used to generate other keys for unicast data encryption. This
 key and other client information form a Security Association that the access
 point names and holds in a cache. The lifetime of this security association
 can be configured with this command. When the lifetime expires, the client
 security association and keys are deleted from the cache. If the client
 returns to the access point, it requires full reauthentication.
- The access point can store up to 256 entries in the PMKSA cache.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #wpa-pre-shared-key ASCII agoodsecret
Enterprise AP(if-wireless g: VAP[0]) #
```

pre-authentication

This command enables WPA2 pre-authentication for fast secure roaming.

Syntax

pre-authentication <enable | disable>

- enable Enables pre-authentication for the VAP interface.
- disable Disables pre-authentication for the VAP interface.

Default Setting

Disabled

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

• Each time a client roams to another access point it has to be fully re-authenticated. This authentication process is time consuming and can disrupt applications running over the network. WPA2 includes a mechanism, known as pre-authentication, that allows clients to roam to a new access point and be quickly associated. The first time a client is authenticated to a wireless network it has to be fully authenticated. When the client is about to roam to another access point in the network, the access point sends pre-authentication messages to the new access point that include the client's security association information. Then when the client sends an association request to the new access point the client is

6 Command Line Interface

known to be already authenticated, so it proceeds directly to key exchange and association.

- To support pre-authentication, both clients and access points in the network must be WPA2 enabled.
- Pre-authentication requires all access points in the network to be on the same IP subnet.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #wpa-pre-shared-key ASCII agoodsecret Enterprise AP(if-wireless g: VAP[0]) #
```

Link Integrity Commands

The access point provides a link integrity feature that can be used to ensure that wireless clients are connected to resources on the wired network. The access point does this by periodically sending Ping messages to a host device in the wired Ethernet network. If the access point detects that the connection to the host has failed, it disables the radio interfaces, forcing clients to find and associate with another access point. When the connection to the host is restored, the access point re-enables the radio interfaces.

Table 6-20. Link Integrity Commands					
Command	Function	Mode	Page		
link-integrity ping-detect	Enables link integrity detection	GC	6-123		
link-integrity ping-host	Specifies the IP address of a host device in the wired network	GC	6-123		
link-integrity ping-interval	Specifies the time between each Ping sent to the link host	GC	6-124		
link-integrity ping-fail-retry	Specifies the number of consecutive failed Ping counts before the link is determined as lost	GC	6-124		
link-integrity ethernet-detect	Enables integrity check for Ethernet link	GC	6-124		
show link-integrity	Displays the current link integrity configuration	Exec	6-125		

link-integrity ping-detect

This command enables link integrity detection. Use the **no** form to disable link integrity detection.

Syntax

[no] link-integrity ping-detect

Default Setting

Disabled

Command Mode

Global Configuration

Command Usage

- When link integrity is enabled, the IP address of a host device in the wired network must be specified.
- The access point periodically sends an ICMP echo request (Ping) packet to
 the link host IP address. When the number of failed responses (either the
 host does not respond or is unreachable) exceeds the limit set by the
 link-integrity ping-fail-retry command, the link is determined as lost.

Example

```
Enterprise AP(config)#link-integrity ping-detect
Enterprise AP(config)#
```

link-integrity ping-host

This command configures the link host name or IP address. Use the **no** form to remove the host setting.

Syntax

link-integrity ping-host <host_name | ip_address>
no link-integrity ping-host

- · host name Alias of the host.
- ip_address IP address of the host.

Default Setting

None

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#link-integrity ping-host 192.168.1.10
Enterprise AP(config)#
```

link-integrity ping-interval

This command configures the time between each Ping sent to the link host.

Syntax

link-integrity ping-interval <interval>

interval - The time between Pings. (Range: 5 - 60 seconds)

Default Setting

30 seconds

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#link-integrity ping-interval 20
Enterprise AP(config)#
```

link-integrity ping-fail-retry

This command configures the number of consecutive failed Ping counts before the link is determined as lost

Syntax

link-integrity ping-fail-retry <counts>

counts - The number of failed Ping counts before the link is determined as lost. (Range: 1 - 10)

Default Setting

6

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#link-integrity ping-fail-retry 10
Enterprise AP(config)#
```

link-integrity ethernet-detect

This command enables an integrity check to determine whether or not the access point is connected to the wired Ethernet.

Syntax

[no] link-integrity ethernet-detect

Default Setting

DISA

Command Mode

Global Configuration

Example

```
Enterprise AP(config)#link-integrity ethernet-detect

Notification : Ethernet Link Detect SUCCESS - RADIO(S) ENABLED

Enterprise AP(config)#
```

show link-integrity

This command displays the current link integrity configuration.

Command Mode

Exec

Example

IAPP Commands

The command described in this section enables the protocol signaling required to ensure the successful handover of wireless clients roaming between different 802.11f-compliant access points. In other words, the 802.11f protocol can ensure successful roaming between access points in a multi-vendor environment.

iapp

This command enables the protocol signaling required to hand over wireless clients roaming between different 802.11f-compliant access points. Use the **no** form to disable 802.11f signaling.

Syntax

[no] iapp

Default

Enabled

Command Mode

Global Configuration

Command Usage

The current 802.11 standard does not specify the signaling required between access points in order to support clients roaming from one access point to another. In particular, this can create a problem for clients roaming between access points from different vendors. This command is used to enable or disable 802.11f handover signaling between different access points, especially in a multi-vendor environment.

Example

```
Enterprise AP(config)#iapp
Enterprise AP(config)#
```

VLAN Commands

The access point can enable the support of VLAN-tagged traffic passing between wireless clients and the wired network. Up to 64 VLAN IDs can be mapped to specific wireless clients, allowing users to remain within the same VLAN as they move around a campus site.

When VLAN is enabled on the access point, a VLAN ID (a number between 1 and 4094) can be assigned to each client after successful authentication using IEEE 802.1X and a central RADIUS server. The user VLAN IDs must be configured on the RADIUS server for each user authorized to access the network. If a user does not have a configured VLAN ID, the access point assigns the user to its own configured native VLAN ID.

Caution: When VLANs are enabled, the access point's Ethernet port drops all received traffic that does not include a VLAN tag. To maintain network connectivity to the access point and wireless clients, be sure that the access point is connected to a device port on a wired network that supports IEEE 802.1Q VLAN tags.

The VLAN commands supported by the access point are listed below.

Table 6-21. VLAN Commands				
Command	Function	Mode	Page	
vlan	Enables a single VLAN for all traffic	GC	6-127	
management- vlanid	Configures the management VLAN for the access point	GC	6-128	
vlan-id	Configures the default VLAN for the VAP interface	IC-W-VAP	6-128	

vlan

This command enables VLANs for all traffic. Use the **no** form to disable VLANs.

Syntax

[no] vlan enable

Default

Disabled

Command Mode

Global Configuration

Command Description

 When VLANs are enabled, the access point tags frames received from wireless clients with the VLAN ID configured for each client on the RADIUS server. If the VLAN ID has not been configured for a client on the RADIUS server, then the frames are tagged with the access point's native VLAN ID. Traffic entering the Ethernet port must be tagged with a VLAN ID that
matches the access point's native VLAN ID, or with a VLAN tag that
matches one of the wireless clients currently associated with the access
point.

Example

```
Enterprise AP(config) #vlan enable
Reboot system now? <y/n>: y
```

Related Commands

management-vlanid (6-128)

management-vlanid

This command configures the management VLAN ID for the access point.

Syntax

```
management-vlanid <vlan-id>
vlan-id - Management VLAN ID. (Range: 1-4094)
```

Default Setting

1

Command Mode

Global Configuration

Command Usage

The management VLAN is for managing the access point. For example, the access point allows traffic that is tagged with the specified VLAN to manage the access point via remote management, SSH, SNMP, Telnet, etc.

Example

```
Enterprise AP(config)#management-vlanid 3
Enterprise AP(config)#
```

Related Commands

```
vlan (6-127)
```

vlan-id

This command configures the default VLAN ID for the VAP interface.

Syntax

```
vlan-id <vlan-id>
vlan-id - Native VLAN ID. (Range: 1-4094)
```

Default Setting

1

Command Mode

Interface Configuration (Wireless-VAP)

Command Usage

- To implement the default VLAN ID setting for VAP interface, the access point must enable VLAN support using the vlan command.
- When VLANs are enabled, the access point tags frames received from wireless clients with the default VLAN ID for the VAP interface. If IEEE 802.1X is being used to authenticate wireless clients, specific VLAN IDs can be configured on the RADIUS server to be assigned to each client. Using IEEE 802.1X and a central RADIUS server, up to 64 VLAN IDs can be mapped to specific wireless clients.
- If the VLAN ID has not been configured for a client on the RADIUS server, then the frames are tagged with the default VLAN ID of the VAP interface.

Example

```
Enterprise AP(if-wireless g: VAP[0]) #vlan-id 3
Enterprise AP(if-wireless g: VAP[0]) #
```

WMM Commands

The access point implements QoS using the Wi-Fi Multimedia (WMM) standard. Using WMM, the access point is able to prioritize traffic and optimize performance when multiple applications compete for wireless network bandwidth at the same time. WMM employs techniques that are a subset of the developing IEEE 802.11e QoS standard and it enables the access point to inter-operate with both WMM-enabled clients and other devices that may lack any WMM functionality.

The WMM commands supported by the access point are listed below.

Table 6-22. WMM Commands				
Command	Function	Mode	Page	
wmm	Sets the WMM operational mode on the access point	IC-W	6-130	
wmm-acknowledge- policy	Allows the acknowledgement wait time to be enabled or disabled for each Access Category (AC)	IC-W	6-130	
wmmparam	Configures detailed WMM parameters that apply to the access point (AP) or the wireless clients (BSS)	IC-W	6-131	

wmm

This command sets the WMM operational mode on the access point. Use the **no** form to disable WMM.

Syntax

[no] wmm <supported | required>

- supported WMM will be used for any associated device that supports this
 feature. Devices that do not support this feature may still associate with the
 access point.
- required WMM must be supported on any device trying to associated with the access point. Devices that do not support this feature will not be allowed to associate with the access point.

Default

supported

Command Mode

Interface Configuration (Wireless)

Example

```
Enterprise AP(if-wireless g) #wmm required
Enterprise AP(if-wireless g) #
```

wmm-acknowledge-policy

This command allows the acknowledgement wait time to be enabled or disabled for each Access Category (AC).

Syntax

wmm-acknowledge-policy <ac_number> <ack | noack>

- ac_number Access categories. (Range: 0-3)
- ack Require the sender to wait for an acknowledgement from the receiver.
- noack Does not require the sender to wait for an acknowledgement from the receiver.

Default

ack

Command Mode

Interface Configuration (Wireless)

Command Usage

 WMM defines four access categories (ACs) – voice, video, best effort, and background. These categories correspond to traffic priority levels and are mapped to IEEE 802.1D priority tags (see Table 5-1). The direct mapping of the four ACs to 802.1D priorities is specifically intended to facilitate interpretability with other wired network QoS policies. While the four ACs are specified for specific types of traffic, WMM allows the priority levels to be configured to match any network-wide QoS policy. WMM also specifies a protocol that access points can use to communicate the configured traffic priority levels to QoS-enabled wireless clients.

 Although turning off the requirement for the sender to wait for an acknowledgement can increases data throughput, it can also result in a high number of errors when traffic levels are heavy.

Example

```
Enterprise AP(if-wireless g) #wmm-acknowledge-policy 0 noack
Enterprise AP(if-wireless g) #
```

wmmparam

This command configures detailed WMM parameters that apply to the access point (AP) or the wireless clients (BSS).

Syntax

wmmparam <AP | BSS> <ac_number> <LogCwMin> <LogCwMax> <AIFS>
 <TxOpLimit> <admission_control>

- · AP Access Point
- · BSS Wireless client
- ac_number Access categories (ACs) voice, video, best effort, and background. These categories correspond to traffic priority levels and are mapped to IEEE 802.1D priority tags as shown in Table 5-1. (Range: 0-3)
- LogCwMin Minimum log value of the contention window. This is the initial
 upper limit of the random backoff wait time before wireless medium access
 can be attempted. The initial wait time is a random value between zero and
 the LogCwMin value. Specify the LogCwMin value. Note that the LogCwMin
 value must be equal or less than the LogCwMax value.
 (Range: 1-15 microseconds)
- LogCwMax Maximum log value of the contention window. This is the
 maximum upper limit of the random backoff wait time before wireless
 medium access can be attempted. The contention window is doubled after
 each detected collision up to the LogCwMax value. Note that the CWMax
 value must be greater or equal to the LogCwMin value.
 (Range: 1-15 microseconds)
- AIFS Arbitrary InterFrame Space specifies the minimum amount of wait time before the next data transmission attempt. (Range: 1-15 microseconds)
- TXOPLimit Transmission Opportunity Limit specifies the maximum time an AC transmit queue has access to the wireless medium. When an AC queue is granted a transmit opportunity, it can transmit data for a time up to the TxOpLimit. This data bursting greatly improves the efficiency for high data-rate traffic. (Range: 0-65535 microseconds)

admission_control - The admission control mode for the access category.
 When enabled, clients are blocked from using the access category.
 (Options: 0 to disable, 1 to enable)

Default

AP Parameters					
WMM Parameters	AC0 (Best Effort)	AC1 (Background)	AC2 (Video)	AC3 (Voice)	
LogCwMin	4	4	3	2	
LogCwMax	10	10	4	3	
AIFS	3	7	2	2	
TXOP Limit	0	0	94	47	
Admission Control	Disabled	Disabled	Disabled	Disabled	

BSS Parameters					
WMM Parameters	AC0 (Best Effort)	AC1 (Background)	AC2 (Video)	AC3 (Voice)	
LogCwMin	4	4	3	2	
LogCwMax	6	10	4	3	
AIFS	3	7	1	1	
TXOP Limit	0	0	94	47	
Admission Control	Disabled	Disabled	Disabled	Disabled	

Command Mode

Interface Configuration (Wireless)

Example

```
Enterprise AP(if-wireless g) #wmmparams ap 0 4 6 3 1 1
Enterprise AP(if-wireless g) #
```

Appendix A: Troubleshooting

Check the following items before you contact local Technical Support.

- 1. If wireless clients cannot access the network, check the following:
 - Be sure the access point and the wireless clients are configured with the same Service Set ID (SSID).
 - If authentication or encryption are enabled, ensure that the wireless clients are
 properly configured with the appropriate authentication or encryption keys.
 - If authentication is being performed through a RADIUS server, ensure that the clients are properly configured on the RADIUS server.
 - If authentication is being performed through IEEE 802.1X, be sure the wireless users have installed and properly configured 802.1X client software.
 - If MAC address filtering is enabled, be sure the client's address is included in the local filtering database or on the RADIUS server database.
 - If the wireless clients are roaming between access points, make sure that all
 the access points and wireless devices in the Extended Service Set (ESS) are
 configured to the same SSID, and authentication method.
- If the access point cannot be configured using the Telnet, a web browser, or SNMP software:
 - Be sure to have configured the access point with a valid IP address, subnet mask and default gateway.
 - If VLANs are enabled on the access point, the management station should be configured to send tagged frames with a VLAN ID that matches the access point's management VLAN (default VLAN 1, page 5-17). However, to manage the access point from a wireless client, the AP Management Filter should be disabled (page 5-17).
 - Check that you have a valid network connection to the access point and that the Ethernet port or the wireless interface that you are using has not been disabled.
 - If you are connecting to the access point through the wired Ethernet interface, check the network cabling between the management station and the access point. If you are connecting to access point from a wireless client, ensure that you have a valid connection to the access point.
 - If you cannot connect using Telnet, you may have exceeded the maximum number of concurrent Telnet sessions permitted (i.e, four sessions). Try connecting again at a later time.

Troubleshooting

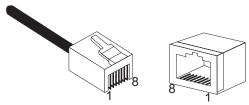
- If you cannot access the on-board configuration program via a serial port connection:
 - Be sure you have set the terminal emulator program to VT100 compatible, 8 data bits, 1 stop bit, no parity and 9600 bps.
 - Check that the null-modem serial cable conforms to the pin-out connections provided on page B-3.
- 4. If you forgot or lost the password:
 - Set the access point to its default configuration by pressing the reset button
 on the back panel for 5 seconds or more. Then use the default user name
 "admin" and default password "smcadmin" to access the management
 interface.
- 5. If all other recovery measure fail, and the access point is still not functioning properly, take any of these steps:
 - Reset the access point's hardware using the console interface, web interface, or through a power reset.
 - Reset the access point to its default configuration by pressing the reset button
 on the back panel for 5 seconds or more. Then use the default user name
 "admin" and default password "smcadmin" to access the management
 interface.

Appendix B: Cables and Pinouts

Twisted-Pair Cable Assignments

For 10/100BASE-TX connections, a twisted-pair cable must have two pairs of wires. Each wire pair is identified by two different colors. For example, one wire might be green and the other, green with white stripes. Also, an RJ-45 connector must be attached to both ends of the cable.

Caution: Each wire pair must be attached to the RJ-45 connectors in a specific


orientation. (See "Straight-Through Wiring" on page B-2 and "Crossover

Wiring" on page B-3 for an explanation.)

Caution: DO NOT plug a phone jack connector into the RJ-45 port. Use only

twisted-pair cables with RJ-45 connectors that conform with FCC standards.

The following figure illustrates how the pins on the RJ-45 connector are numbered. Be sure to hold the connectors in the same orientation when attaching the wires to the pins.

10/100BASE-TX Pin Assignments

Use unshielded twisted-pair (UTP) or shielded twisted-pair (STP) cable for RJ-45 connections: 100-ohm Category 3 or better cable for 10 Mbps connections, or 100-ohm Category 5 or better cable for 100 Mbps connections. Also be sure that the length of any twisted-pair connection does not exceed 100 meters (328 feet).

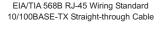

The RJ-45 port on the access point is wired with MDI pinouts. This means that you must use crossover cables for connections to PCs or servers, and straight-through cable for connections to switches or hubs. However, when connecting to devices that support automatic MDI/MDI-X pinout configuration, you can use either straight-through or crossover cable.

Table B-1. 10/100BASE-TX MDI Port Pinouts		
Pin	MDI Signal Name	
1	Transmit Data plus (TD+)	
2	Transmit Data minus (TD-)	
3	Receive Data plus (RD+)	
4	GND (Positive Vport)	
5	GND (Positive Vport)	
6	Receive Data minus (RD-)	
7	-48V feeding power (Negative- Vport)	
8	-48V feeding power (Negative- Vport)	

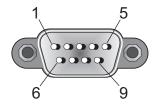
Note: The "+" and "-" signs represent the polarity of the wires that make up each wire pair.

Straight-Through Wiring

Because the 10/100 Mbps port on the access point uses an MDI pin configuration, you must use "straight-through" cable for network connections to hubs or switches that only have MDI-X ports. However, if the device to which you are connecting supports auto-MDIX operation, you can use either "straight-through" or "crossover" cable.

Crossover Wiring

Because the 10/100 Mbps port on the access point uses an MDI pin configuration, you must use "crossover" cable for network connections to PCs, servers or other end nodes that only have MDI ports. However, if the device to which you are connecting supports auto-MDIX operation, you can use either "straight-through" or "crossover" cable.


EIA/TIA 568B RJ-45 Wiring Standard

10/100BASE-TX Crossover Cable

White/Orange Stripe
Orange
White/Green Stripe
Blue
3
White/Blue Stripe
6
Green
White/Brown Stripe
Brown

Console Port Pin Assignments

The DB-9 console port on the front panel of the access point is used to connect to the access point for out-of-band console configuration. The command-line configuration program can be accessed from a terminal, or a PC running a terminal emulation program. The pin assignments and cable wiring used to connect to the console port are provided in the following table.

Wiring Map for Serial Cable

	Table B-2. Wiring Map for Serial Cable				
DB9 Male (AP Console)			DB9 Male (PC DTE)		
Pin	Function		Pin Function		
1	Unused		1	Unused	
2	RXD (receive data)	←	3	TXD (transmit data)	
3	TXD (transmit data)	-	2	RXD (receive data)	
4	Unused		4	Unused	
5	GND (ground)		5	GND (ground)	
6	Unused		9	Unused	
7	RTS (request to send)		8	CTS (clear to send)	
8	CTS (clear or send)	←	7	RTS (request to send)	
9	Unused		6	Unused	

Note: The left hand column pin assignments are for the male DB-9 connector on the access point. Pin 3 (TXD or "transmit data") must emerge on the management console's end of the connection as RXD ("receive data"). Pin 8 (CTS or "clear to send") must emerge on the management console's end of the connection as RTS ("request to send")

Appendix C: Specifications

General Specifications

Maximum Channels

802.11b/g:

FCC/IC: 1-11 ETSI: 1-13 France: 10-13 MKK: 1-14 Taiwan: 1-11

Maximum Clients

64 per VAP interface

Operating Range

See "Operating Range" on page C-5

Data Rate

802.11g: 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps per channel 802.11b: 1, 2, 5.5, 11 Mbps per channel

Modulation Type

802.11g: CCK, BPSK, QPSK, OFDM 802.11b: CCK, BPSK, QPSK

Network Configuration

Infrastructure

Operating Frequency

802.11b:

2.4 ~ 2.4835 GHz (US, Canada, ETSI) 2.4 ~ 2.497 GHz (Japan) 2.400 ~ 2.4835 GHz (Taiwan)

Channels 12 and 13 will be disabled by the software in the USA

AC Power Adapter

Input: 100-240 AC, 50-60 Hz

Output: 5.1 VDC, 3A

Power consumption: 13.2 watts

Unit Power Supply

DC Input: 5 VDC, 2 A maximum PoE input: -48 VDC, 0.2 A maximum Power consumption: 9.6 W maximum

Specifications

PoE (DC)

Input voltage: 48 volts, 0.2 A, 12.96 watts

Note: Power can also be provided to the access point through the Ethernet port based

on IEEE 802.3af Power over Ethernet (PoE) specifications. When both PoE is

provided and the adapter is plugged in, PoE will be turned off.

Physical Size

21 x 12.5 x 2.6cm (8.27 x 4.92x 1.02 in)

Weight

0.665 kg (1.466 lbs)

LED Indicators

PWR (Power), Link (Ethernet Link/Activity), 11g (Wireless Link/Activity)

Network Management

Web-browser, RS232 console, Telnet, SSH, SNMP

Temperature

Operating: 0 to 50 °C (32 to 122 °F) Storage: 0 to 70 °C (32 to 158 °F)

Humidity

15% to 95% (non-condensing)

Compliances

FCC Class B (US) ICES-003 (Canada) RTTED 1999/5/EC VCCI (Japan) RCR STD-33A

Radio Signal Certification

FCC Part 15C 15.247, 15.207 (2.4 GHz) RSS-210 (Canada) EN 300.328, EN 301.489-1, EN 301.489-17, EN 50385 MPT RCR std.33 (D33 1~13 Channel, T66 Channel 14)

Safety

CSA 60950-1 / UL60950-1 IEC 60950-1 / EN60950-1

Standards

IEEE 802.3 10BASE-T, IEEE 802.3u 100BASE-TX, IEEE 802.11b, g

Sensitivity

IEEE 802.11g		
Data Rate	Sensitivity (dBm)	
6 Mbps	-88	
9 Mbps	-87	
12 Mbps	-86	
17 Mbps	-85	
24 Mbps	-81	
36 Mbps	-77	
48 Mbps	-72	
54 Mbps	-70	

IEEE 802.11b		
Data Rate	Sensitivity (dBm)	
1 Mbps	-93	
2 Mbps	-90	
5.5 Mbps	-90	
11 Mbps	-87	

Transmit Power

IEEE 802.11g	Maximum Output Power (GHz - dBm)		
Data Rate	2.412	2.417~2.467	2.472
6 Mbps	16	21	19
9 Mbps	16	21	19
12 Mbps	16	21	19
18 Mbps	16	21	19
24 Mbps	16	21	19
36 Mbps	16	21	19
48 Mbps	16	21	19

IEEE 802.11g	Maximum Output Power (GHz - dBm)		
Data Rate	2.412 2.417~2.467 2.472		
54 Mbps	16	21	19
108 Mbps	N/A	22	N/A

IEEE 802.11b	Maximum Output Power (GHz - dBm)		
Data Rate	2.412 2.417~2.467 2.472		
1 Mbps	19	20	22
2 Mbps	19	20	22
5.5 Mbps	19	20	22
11 Mbps	19	20	22

Operating Range

Important Notice

Maximum distances posted below are actual tested distance thresholds. However, there are many variables such as barrier composition and construction and local environmental interference that may impact your actual distances and cause you to experience distance thresholds far lower than those posted below.

Table C-1 802.11g Wireless Distance Table												
	Speed and Distance Ranges											
Environment	54	48	36	24	18	12	11	9	6	5	2	1
	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps
Outdoors ¹	82 m	100 m	300 m	330 m	350 m	450 m	470 m	485 m	495 m	510 m	520 m	525 m
	269 ft	328 ft	984 ft	1082 ft	1148 ft	1475 ft	1541 ft	1590 ft	1623 ft	1672 ft	1705 ft	1722 ft
Indoors ²	20 m	25 m	35 m	43 m	50 m	57 m	66 m	71 m	80 m	85 m	90 m	93 m
	66 ft	82 ft	115 ft	141 ft	164 ft	187 ft	216 ft	233 ft	262 ft	279 ft	295 ft	305 ft

Table C-2 802.11b Wireless Distance Table					
Speed and Distance Ranges					
Environment	11 Mbps	5.5 Mbps	2 Mbps	1 Mbps	
Outdoors ¹	300 m 984 ft	465 m 1525 ft	500 m 1639 ft	515 m 1689 ft	
Indoors ²	60 m 197 ft	70 m 230 ft	83 m 272 ft	85 m 279 ft	

Notes: 1. Outdoor Environment: A line-of-sight environment with no interference or obstruction between the access point and clients.

Indoor Environment: A typical office or home environment with floor to ceiling obstructions between the access point and clients.

Glossary

10BASE-T

IEEE 802.3 specification for 10 Mbps Ethernet over two pairs of Category 3 or better UTP cable.

100BASE-TX

IEEE 802.3u specification for 100 Mbps Fast Ethernet over two pairs of Category 5 or better UTP cable.

Access Point

An internetworking device that seamlessly connects wired and wireless networks. Access points attached to a wired network, support the creation of multiple radio cells that enable roaming throughout a facility.

Ad Hoc

A group of computers connected as an independent wireless network, without an access point.

Advanced Encryption Standard (AES)

An encryption algorithm that implements symmetric key cryptography. AES provides very strong encryption using a completely different ciphering algorithm to TKIP and WEP.

Authentication

The process to verify the identity of a client requesting network access. IEEE 802.11 specifies two forms of authentication: open system and shared key.

Backbone

The core infrastructure of a network. The portion of the network that transports information from one central location to another central location where it is unloaded onto a local system.

Basic Service Set (BSS)

A set of 802.11-compliant stations and an access point that operate as a fully-connected wireless network.

Beacon

A signal periodically transmitted from the access point that is used to identify the service set, and to maintain contact with wireless clients.

Broadcast Key

Broadcast keys are sent to stations using 802.1X dynamic keying. Dynamic broadcast key rotation is often used to allow the access point to generate a random group key and periodically update all key-management capable wireless clients.

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance.

Dynamic Host Configuration Protocol (DHCP)

Provides a framework for passing configuration information to hosts on a TCP/IP network. DHCP is based on the Bootstrap Protocol (BOOTP), adding the capability of automatic allocation of reusable network addresses and additional configuration options.

Encryption

Data passing between the access point and clients can use encryption to protect from interception and evesdropping.

Extended Service Set (ESS)

More than one wireless cell can be configured with the same Service Set Identifier to allow mobile users can roam between different cells with the Extended Service Set.

Extensible Authentication Protocol (EAP)

An authentication protocol used to authenticate network clients. EAP is combined with IEEE 802.1X port authentication and a RADIUS authentication server to provide "mutual authentication" between a client, the access point, and the a RADIUS server

Ethernet

A popular local area data communications network, which accepts transmission from computers and terminals.

File Transfer Protocol (FTP)

A TCP/IP protocol used for file transfer.

Hypertext Transfer Protocol (HTTP)

HTTP is a standard used to transmit and receive all data over the World Wide Web.

IEEE 802.11b

A wireless standard that supports wireless communications in the 2.4 GHz band using Direct Sequence Spread Spectrum (DSSS). The standard provides for data rates of 1, 2, 5.5, and 11 Mbps.

IEEE 802.11g

A wireless standard that supports wireless communications in the 2.4 GHz band using using Orthogonal Frequency Division Multiplexing (OFDM). The standard provides for data rates of 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps. IEEE 802.11g is also backward compatible with IEEE 802.11b.

IEEE 802.1X

Port Authentication controls access to the switch ports by requiring users to first enter a user ID and password for authentication.

Infrastructure

An integrated wireless and wired LAN is called an infrastructure configuration.

Inter Access Point Protocol (IAPP)

A protocol that specifies the wireless signaling required to ensure the successful handover of wireless clients roaming between different 802.11f-compliant access points.

Local Area Network (LAN)

A group of interconnected computer and support devices.

MAC Address

The physical layer address used to uniquely identify network nodes.

Network Time Protocol (NTP)

NTP provides the mechanisms to synchronize time across the network. The time servers operate in a hierarchical-master-slave configuration in order to synchronize local clocks within the subnet and to national time standards via wire or radio.

Open System

A security option which broadcasts a beacon signal including the access point's configured SSID. Wireless clients can read the SSID from the beacon, and automatically reset their SSID to allow immediate connection to the nearest access point.

Orthogonal Frequency Division Multiplexing (ODFM)

OFDM/ allows multiple users to transmit in an allocated band by dividing the bandwidth into many narrow bandwidth carriers.

Power over Ethernet (PoE)

A specification for providing both power and data to low-power network devices using a single Category 5 Ethernet cable. PoE provides greater flexibility in the locating of access point's and network devices, and significantly decreased installation costs.

RADIUS

A logon authentication protocol that uses software running on a central server to control access to the network.

Roaming

A wireless LAN mobile user moves around an ESS and maintains a continuous connection to the infrastructure network

RTS Threshold

Transmitters contending for the medium may not be aware of each other. RTS/CTS mechanism can solve this "Hidden Node Problem." If the packet size is smaller than the preset RTS Threshold size, the RTS/CTS mechanism will NOT be enabled.

Service Set Identifier (SSID)

An identifier that is attached to packets sent over the wireless LAN and functions as a password for joining a particular radio cell; i.e., Basic Service Set (BSS).

Session Key

Session keys are unique to each client, and are used to authenticate a client connection, and correlate traffic passing between a specific client and the access point.

Shared Key

A shared key can be used to authenticate each client attached to a wireless network. Shared Key authentication must be used along with the 802.11 Wireless Equivalent Privacy algorithm.

Simple Network Management Protocol (SNMP)

The application protocol in the Internet suite of protocols which offers network management services.

Simple Network Time Protocol (SNTP)

SNTP allows a device to set its internal clock based on periodic updates from a Network Time Protocol (NTP) server. Updates can be requested from a specific NTP server, or can be received via broadcasts sent by NTP servers.

Temporal Key Integrity Protocol (TKIP)

A data encryption method designed as a replacement for WEP. TKIP avoids the problems of WEP static keys by dynamically changing data encryption keys.

Trivial File Transfer Protocol (TFTP)

A TCP/IP protocol commonly used for software downloads.

Virtual Access Point (VAP)

Virtual AP technology multiplies the number of Access Points present within the RF footprint of a single physical access device. With Virtual AP technology, WLAN users within the device's footprint can associate with what appears to be different access points and their associated network services. All the services are delivered using a single radio channel, enabling Virtual AP technology to optimize the use of limited WLAN radio spectrum.

Virtual LAN (VLAN)

A Virtual LAN is a collection of network nodes that share the same collision domain regardless of their physical location or connection point in the network. A VLAN serves as a logical workgroup with no physical barriers, and allows users to share information and resources as though located on the same LAN.

Wi-Fi Protected Access

WPA employs 802.1X as its basic framework for user authentication and dynamic key management to provide an enhanced security solution for 802.11 wireless networks.

Wired Equivalent Privacy (WEP)

WEP is based on the use of security keys and the popular RC4 encryption algorithm. Wireless devices without a valid WEP key will be excluded from network traffic.

WPA Pre-shared Key (PSK)

PSK can be used for small office networks that may not have the resources to configure and maintain a RADIUS server, WPA provides a simple operating mode that uses just a pre-shared password for network access.

Glossary

Index

configuration, initial setup 4-1

Numerics	console port 1-4
802.11g 6-94	connecting 2-2
302.11g 3 3 1	pin assignments B-3
Α	required settings 4-1
AES 5-78	country code
antennas, positioning 2-2	configuring 4-3, 6-12
authentication 5-12, 6-113	crossover cable B-3
cipher suite 5-80, 6-114	CSMA/CA 1-1
closed system 6-104	CTS 5-53, 6-102
configuring 5-12, 6-113	D
MAC address 5-13, 6-69, 6-70	
type 5-66, 6-104	data rate
В	maximum distances C-5
	data rate, options C-1
Basic Service Set See BSS	default settings 1-6 device status, displaying 5-85, 6-22
beacon	DHCP 5-5, 6-88, 6-89
interval 5-52, 6-100	distances, maximum C-5
rate 5-52, 6-101 BOOTP 6-88, 6-89	DNS 5-6, 6-88
BPDU 5-23	Domain Name Server See DNS
BSS 3-3	downloading software 5-29, 6-55
	DSSS 1-1
C	DTIM 5-52, 6-101
cable	Dynamic Host Configuration Protocol
assignments B-1	See DHCP
crossover B-3	_
straight-through B-2	E
CCK 1-1	EAP 5-77
channel 6-96	encryption 5-66, 5-71, 5-77
channels, maximum C-1	Ethernet
Clear To Send See CTS	cable 2-2
CLI 6-1	port 1-4
command modes 6-4	event logs 5-91, 6-31
clients, maximum C-1	Extensible Authentication Protocol See
closed system 5-55, 6-104	EAP
command line interface See CLI	F
community name, configuring 6-40	factory defaults
community string 5-39, 6-40	restoring 5-31, 6-10
configuration settings, saving or	100.01.119 0 01, 0 10
restoring 5-31, 6-55	

filter 5-17, 6-69	L
address 5-12, 6-69	LED indicators 1-3
between wireless clients 5-17, 6-72	lock, Kensington 2-1
local bridge 5-17, 6-72	log
local or remote 5-12, 6-71	messages 5-34, 5-91, 6-28
management access 5-17, 6-73	server 5-33, 6-28
protocol types 6-74	login
VLANs 5-55, 6-127	CLI 6-1
firmware	web 4-3
displaying version 5-31, 6-23	logon authentication
upgrading 5-29, 5-31, 6-55	RADIUS client 5-14, 6-58
fragmentation 6-101	11/12/13/3 chort 3 11, 3 33
•	M
G	MAC address, authentication 5-13,
gateway address 4-2, 5-6, 6-2, 6-88	6-69, 6-70
Н	maximum associated clients 5-52
= =	maximum data rate 6-95
hardware version, displaying 6-23 HTTP, secure server 6-19	802.11a interface 6-95
HTTPS 6-19	802.11g interface 6-95
HI1F3 0-19	maximum distances C-5
I	mounting the access point 2-1
IAPP 6-126	N
IEEE 802.11a 1-1, 5-49, 6-94	- -
configuring interface 6-94	network topologies
maximum data rate 6-95	infrastructure 3-3
radio channel 6-96	infrastructure for roaming 3-4
IEEE 802.11b 5-49	0
IEEE 802.11f 6-126	OFDM 1-1
IEEE 802.11g 5-49	open system 5-66, 6-104
configuring interface 5-49, 6-94	operating frequency C-1
maximum data rate 6-95	
radio channel 5-50, 6-96	P
IEEE 802.1x 5-77, 6-64, 6-69	package checklist 1-2
configuring 5-82, 6-64	password
infrastructure	configuring 5-28, 6-15
wireless bridge 3-5	management 5-28, 6-15
wireless repeater 3-6	pin assignments
initial setup 4-1	console port B-3
installation	DB-9 port B-3
hardware 2-1	PoE 1-4
mounting 2-1	specifications C-1
IP address	port priority
BOOTP/DHCP 6-88, 6-89	STA 6-85
configuring 4-2, 5-5, 6-88, 6-89	power connection 2-2

Power over Ethernet See PoE	specifications C-1
power supply, specifications C-1	SSH
PSK 5-77	server Status 5-11 SSID 5-71, 6-104
R	SSL 6-19
radio channel	STA
802.11a interface 6-96	interface settings 6-85-??
802.11g interface 5-50, 6-96	path cost 6-85
RADIUS 5-7, 5-77, 6-58	port priority 6-85
RADIUS, logon authentication 5-14,	startup files, setting 6-54
6-58 Remote Authentication Dial-in User	station status 5-88, 6-108
Service See RADIUS	status displaying device status 5-85, 6-22
Request to Send See RTS	displaying station status 5-88, 6-108
reset 5-31, 6-10	straight-through cable B-2
reset button 1-5, 5-31	system clock, setting 5-35, 6-34
resetting the access point 5-31, 6-10	system log
restarting the system 5-31, 6-10	enabling 5-33, 6-28
RJ-45 port configuring duplex mode 6-90	server 5-33, 6-28
configuring duplex mode 6-90	system software, downloading from server 5-29, 6-55
RTS	Server 5-29, 0-33
threshold 5-53, 6-102	Т
	Telnet
S	Telnet for managenet access 6-1
S Secure Socket Layer <i>See</i> SSL	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See
Secure Socket Layer See SSL security, options 5-66	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP
Secure Socket Layer <i>See</i> SSL security, options 5-66 session key 5-82, 5-83, 6-66	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35
Secure Socket Layer See SSL security, options 5-66	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77
S Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35
S Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42
S Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42
S Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42
S Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40 enabling traps 5-39, 6-41	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1
S Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1
Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40 enabling traps 5-39, 6-41 trap destination 5-39, 6-42 trap manager 5-39, 6-42 SNTP 5-35, 6-33	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1 U upgrading software 5-29, 6-55
Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40 enabling traps 5-39, 6-41 trap destination 5-39, 6-42 trap manager 5-39, 6-42 SNTP 5-35, 6-33 enabling client 5-35, 6-33	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1 U upgrading software 5-29, 6-55 user name, manager 5-28, 6-15 user password 5-28, 6-15
Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40 enabling traps 5-39, 6-41 trap destination 5-39, 6-42 trap manager 5-39, 6-42 SNTP 5-35, 6-33 enabling client 5-35, 6-33 server 5-35, 6-33	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1 U upgrading software 5-29, 6-55 user name, manager 5-28, 6-15 user password 5-28, 6-15
Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40 enabling traps 5-39, 6-41 trap destination 5-39, 6-42 trap manager 5-39, 6-42 SNTP 5-35, 6-33 enabling client 5-35, 6-33 server 5-35, 6-33 software	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1 U upgrading software 5-29, 6-55 user name, manager 5-28, 6-15 user password 5-28, 6-15 V VLAN
Secure Socket Layer See SSL security, options 5-66 session key 5-82, 5-83, 6-66 shared key 5-72, 6-116 Simple Network Time Protocol See SNTP SNMP 5-38, 6-39 community name 6-40 community string 6-40 enabling traps 5-39, 6-41 trap destination 5-39, 6-42 trap manager 5-39, 6-42 SNTP 5-35, 6-33 enabling client 5-35, 6-33 server 5-35, 6-33	Telnet for managenet access 6-1 Temporal Key Integrity Protocol See TKIP time zone 5-36, 6-35 TKIP 5-77 transmit power, configuring 5-52, 6-96 trap destination 5-39, 6-42 trap manager 5-39, 6-42 troubleshooting A-1 U upgrading software 5-29, 6-55 user name, manager 5-28, 6-15 user password 5-28, 6-15

Index

W

WEP 5-71 configuring 5-71 shared key 5-72, 6-116 Wi-Fi Multimedia *See* WMM Wi-Fi Protected Access See WPA Wired Equivalent Protection See WEP WPA 5-77 pre-shared key 5-80, 6-120 WPA, pre-shared key See PSK

TECHNICAL SUPPORT

From U.S.A. and Canada (24 hours a day, 7 days a week) Phn: 800-SMC-4-YOU / 949-679-8000

Fax: 949-502-3400

ENGLISH

Technical Support information available at www.smc.com

FRENCH

Informations Support Technique sur www.smc.com

DELITSCH

 ${\bf Technischer\ Support\ und\ weitere\ Information\ unter\ www.smc.com}$

SPANISH

En www.smc.com Ud. podrá encontrar la información relativa a servicios de soporte técnico

DUTCH

Technische ondersteuningsinformatie beschikbaar op www.smc.com

PORTUGUES

Informações sobre Suporte Técnico em www.smc.com

SWEDISH

Information om Teknisk Support finns tillgängligt på www.smc.com

INTERNET

E-mail address: techsupport@smc.com

Driver updates

http://www.smc.com/

 $index.cfm? action = tech_support_drivers_downloads$

World Wide Web

http://www.smc.com/

SMC2552W-G2